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ABSTRACT

A number of applications require radiation of a short pulse of electromagnetic energy out to large
distances.  These applications include target discrimination in a cluttered environment (e.g., looking over the
ocean), aircraft identification by taking a “TDR” of its major scattering centers, and target location through
foliage.  The Impulse Radiating Antenna (IRA) has generated widespread interest for its ability to radiate a
broadband pulse.  The purpose of this paper is to summarize recent work on Impulse Radiating Antennas.

INTRODUCTION

Impulse Radiating Antennas (IRAs) are meant to satisfy the need for a radiating device for one class
of transient radars.  This class of radar attempts to solve several problems, such as target identification by
scattering centers on aircraft, target discrimination in a highly cluttered environment such as when looking
over the ocean, and foliage penetration.  We provide here the basic theory of Impulse Radiating Antennas,
and apply that theory to some practical examples.

BASIC THEORY

Impulse radiating antennas consist of a conical TEM feed that attaches to a reflector antenna.  The
load at the attachment point is chosen so that at low frequencies the antenna behaves as a p m×  dipole with a
cardioid radiation pattern1,2.  An example of a IRA is shown in Figure 1.

Before providing specific designs for IRA's, we first describe a simple theory on which the devices
are based.  Consider a planar aperture as shown in Figure 2, whose tangential electric field is described by3
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where the usual convention of primed coordinates referring to the source and unprimed coordinates referring
to the observation point has been used.  This is just a plane-wave distribution with a uniform time dependence
of f(t) in the time domain.  The spatial distribution in the aperture is handled by r rg r( )′ , and the direction of
maximum radiation is 
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and the following definitions apply
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If we now specialize the above equations to a uniform plane wave in the aperture, then
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Furthermore, if we specify that the observation point is on boresight 1 1r o=d i, then the above equations
simplify considerably to
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Thus, if the aperture field has a step-function time dependence, then the radiated field on boresight is
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This delta function requires some interpretation.
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Figure 1.  An IRA.          Figure 2.  The  aperture field.

The problem we face is that on boresight, the energy density is infinite, for bounded aperture fields.
Since this is clearly nonphysical, greater care must be taken with the aperture integral in the boresight di-
rection.  It has been shown that a more careful aperture field integration leads to3

E z E u t z cz z o1 1d i b g= − / ,    0 < − <t z c t/ ∆ (2.8)
where ∆ t  is the clear time required to first see the edge of the aperture.  The above is a step function lasting
for  a time ∆ t.  For a circular aperture of radius a,  ∆ t ≈ a2/(2rc), so the integral of the electric field for the
duration of this step function is just
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This provides the same integral as that generated by integrating the delta function of (2.7).

In order to account for the unusual behavior on boresight, we define an approximate delta function δ
a(r,t), which has the following properties.  Its area is unity,  its peak magnitude is proportional to r, and its
width is proportional to 1/r.  As r → ∞ , this becomes a true delta function, and δa r t r( , ) /  has a peak which
is constant with r.  Thus, δa r t( , ) should be used instead of δ tb g  where required to maintain finite energy.
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The Aperture-Field Integral

The integral of the aperture field was carried out in the previous section for the trivial case of a
circular aperture excited uniformly with a step function.  In this section we generalize the above results for
more arbitrary aperture distributions.  These results will provide an effective height that characterizes the
radiation on boresight for an aperture.

Consider an aperture field generated by the transmission line formed by two parallel wires.  A dia-
gram of this is shown in Figure 3.  As we saw in the previous section, the radiated electric field on boresight
is
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where δa tb g is the approximate Dirac delta function as described in the previous section.  The integral can be
carried out for several geometries using contour integration in the complex plane.  Consider the aperture
distribution generated by two parallel wires as shown in Figure 3.  If there is a voltage V between the two
conductors, and the two conductors form a transmission line of characteristic impedance fgZo, then let us
define an aperture height such that4
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This provides a simple way of expressing the far field
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One now needs to perform the integration in (3.2) in order to find the aperture height.
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Figure 3.  Transmission line for forming the   Figure 4.  The contour to be integrated.
aperture field.

In order to perform the integration, we convert the vector electric field to a single complex function
in the complex plane (Figure 4).  The aperture electric field can be expressed as the two-dimensional gradient
of a complex potential function.  Thus,

ζ = −x jy ≡ complex coordinate , w u jvζ ζ ζb g b g b g= − ≡ complex potential
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We now cast the integral into a complex surface integral as follows
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By Green's theorem, the surface integral of a complex function can be recast as a contour integral4, so
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Note the branch cut in Figure 4 which makes v (the magnetic potential) single-valued.  Therefore, the con-
tribution from Co is strictly subtracted, but gives zero in some of the above formulas.  We now have a simple
form for calculating the effective height of an antenna.  For the two-wire problem, the complex potential
function is obtained from a standard text such as Smythe5, so

w j aζ ζb g b g= 2 arccot / (3.8)
This can be substituted into (3.7) for various aperture shapes, so effective heights can be determined simply.
If the feed wires are thin, we find the aperture integral for various aperture shapes to be

h ha eq/
/
.=

R
S|
T|

1 2
0 55

1

    circular aperture
   square aperture

strip aperture
(3.9)

where h beq o= 2  is the equivalent height (spacing) of two parallel conductors.  Furthermore, if the wires are
of any arbitrary shape, then the result  for an infinite aperture is

h ha eq/ /= 1 2 (3.10)
Thus,  the radiated field on boresight for the usual case of a circular aperture is
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where the approximate delta function is defined in the previous section.

Note that the above contour integral was calculated with the assumption that the feed is long.  This is
an unnecessary constraint, as shown by Farr and Baum6, Appendix A.  It is shown there that a reflection off a
paraboloidal reflector  produces a flat phase front with the same aperture field distribution as an infinitely
long cylindrical transmission line (TEM mode), and is exactly expressed by the usual stereographic
transformation (with minus sign, reflector transformation).

A SIMPLE MODEL OF THE IRA

In the previous section we described the impulsive portion of the radiation from the IRA on bore-
sight.  Now, we develop a simple expression for the entire waveform 6.

Consider what happens when a step voltage drives the IRA shown in Figure 1.  There is a prepulse
for a time 2F/c, where F is the focal length of the reflector.  This is due to the direct radiation of the currents
on the feed arms.  The shape of this prepulse is a step function, similar to the driving voltage.  In the last two
sections we saw that the impulsive portion of the radiated field is an approximate delta function, so let us
consider a radiated waveform shown in Figure 5.  The area of the impulse is known from Sections 2 and 3.
Furthermore, it is possible to calculate the direct radiation from a conical feed by using various stereographic
projections.  If the area under the prepulse is equal to the area under the impulse, then the tail portion of the
waveform can be made small with proper tuning of the matching circuit.
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Figure 5.  Step Response of an IRA.      Figure 6.  Circular cone IRA feed. Figure 7. Projection of the
conical feed onto a plane.

We calculate now the magnitude of the prepulse.  It is simplest to calculate this for the geometry of
two circular cones, as shown in Figure 6.  If one were interested in a feed consisting of flat plates (either
facing or coplanar), then for high impedances (small α) the results for the circular cones describe the plate ge-
ometries of angular width 4α as well.  For lower impedances, more exact expressions are available6.

It is now necessary to project the spherical geometry of the circular cones onto a planar surface.  In
order to do so, we invoke the usual stereographic projection5.  Thus, the polar coordinates in the projection
plane are

x F= 2 2cos tan /φ θb g b g,   y F= 2 2sin tan /φ θb g b g (4.1)
The projection of the spherical cone generates a cylindrical structure whose cross-section is two circles with
half height b and radius a such that

b
F

=
+

2 sin
cos cos

β
α β
b g

b g b g   , a
F

=
+

2 sin
cos cos

α
α β
b g

b g b g (4.2)

where a and b are as shown in Figure 7.  It is simple to find the electric field at the center of the projected
structure7.  Thus, we find the backward radiated field (forward as far as our antenna is concerned) to be
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This is just what we need for calculating the ratio of the prepulse area to the impulse area.  The impulse area
is found by integrating (3.10) with respect to time.  The prepulse area is found by multiplying (4.3) by 2F/c,
the round trip transit time of the feed.  The ratio of the prepulse area to the impulse area is found to be
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If this ratio is approximately equal to unity, then the two areas are equal.  A plot of the difference of this ratio
from unity is shown in Figure 8.  For the types of parameters in which one is typically interested (F/D = 0.4,
Zfeed = 400 Ω), the areas are equal to better than 1%.  Thus, a reasonable expression for the on-boresight
radiated field is
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Of course, this expression makes use of a number of assumptions, including the use of an ideal matching
circuit at the boundary between the feed and reflector.  A second assumption is that the aperture blockage is
small (valid for thin feed projections).  Nevertheless, it is very helpful that such a simple result is available for
such a complex structure.

A number of design features are still to be considered in order to minimize the tail on the IRA.  A
design for the matching circuit is still under development.  This design requires a calculation of the electric
and magnetic moments of the IRA.  Once these are known, the resistance of the matching circuit at low fre-
quencies can be calculated, which will balance the two dipole moments.  A second area of further work will
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be to calculate the field scattered from the TEM feed and the reflector edges using diffraction theory.  Both of
these issues are currently being addressed.
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Figure 8.  Error between the impulse area and prepulse area. Figure 9.  A TEM Horn.

TEM HORN

Another antenna sometimes used for radiating fast transients is the TEM horn (Figure 9). It is
simplest to provide an analysis of a TEM horn by starting with the low frequencies.  A low-frequency model
of the TEM horn can be generated by using a simple open-circuit transmission-line model8.  The model is
generated by breaking the transmission line into a cascade of differential segments.  The current and charge
are known on each of these segments as a function of time, so they can be considered a cascade of small
electric and magnetic dipoles.  The fields radiated by each of these dipoles can be summed on boresight,
leading to a low frequency model of
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where fg is the ratio of the horn impedance to the impedance of free space, h is the height of the horn at its
aperture,  is the length of the horn, and Vo is the magnitude of the voltage step launched onto the horn.

The above model is incorrect at high frequencies, because the early part of the step response is ac-
tually a step function.  This is merely the 1/r extrapolation of the field at the aperture.  In order to correct for
this, it is necessary to flatten the top of the δ-function in the above equation, and broaden its width, while
maintaining the same area8.  The effective width (in seconds) of this flattened δ-function is just the area of the 
δ-function as determined by the low-frequency model, divided by the peak magnitude4.  In the time domain,
the step response has a form shown in Figure 10.  This is roughly equivalent in the frequency domain to
running the ideal step response through a low-pass filter of the form
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Although the this filter function must be considered only approximate, it has been demonstrated that it has the
correct mid-frequency and high-frequency behavior.  The only ambiguity is its behavior near ω=ω2.

The above results are valid only under the assumption of a matched load at the apex of the horn.  If
the source is not matched to the characteristic impedance of the horn, then there are multiple reflections
within the TEM horn, and the above description is no longer valid.  Furthermore, there is an assumption that
there is no loss of signal as it passes through the matching circuit.  This is therefore an idealized model, since
normally there would be a factor of two loss in voltage as it passed through a matching circuit.  Some
suggestions for such matching networks are provided by Farr and Baum8.

h
w
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There are a number of variations on the above rather simple design.  In particular, one might con-
sider using a lens in front of the TEM horn, in order to provide additional focusing9.  This has the effect of
sharpening the “broadened” delta function back to its original form.  In doing so, this converts the antenna
into a lens IRA8.  Although this arrangement can considerably reduce the high-frequency rolloff of a TEM
horn, it should be pointed out that lenses can be very heavy.
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Figure 10.  Step Response of a TEM horn.

AN EXAMPLE:  TEM HORN AND TWO SIZES OF IRA

We compare now the performance of a TEM horn to two IRAs.  One IRA (medium size) has a di-
ameter equal to the length of the TEM horn, while the other IRA (small size) has the same aperture area as the
TEM horn, as shown in Figure 11.  The TEM horn has an impedance of ~116 Ω, while both IRA's have feed
impedances of 400 Ω and F/D ratios of 0.4.  The TEM horn is driven with 200 kV peak voltage, while the
IRA's are driven with 371 kV, providing the same power to both antennas.  Note that various baluns are re-
quired for both cases, which may require conversion of single-ended signal to differential.  The driving
voltage is a double exponential with a 200 ps. 10-90% risetime and a long decay time.

The frequency domain step response of the three antennas at 1 km on boresight is shown in Figure
12.  The response to the driving voltage at 1 km is shown in the time domain in Figure 13.  The response of
both IRAs is better than that of the TEM horn everywhere except at very low frequencies for the small IRA.
The high-frequency rolloff of the TEM horn is clear from these results.

length =  3.3m
height = 1 m
width  = 2 m dia = 1.6m dia = 3.3 m

Figure 11. TEM horn and two sizes of IRA for comparison.  The center IRA (small) has the same aperture
area as the TEM horn, while the right IRA (medium) has a diameter equal to the length of the TEM horn.
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 Figure 13.  Time domain response of the three antennas at 1 km.

CONCLUSION

We have described in detail the behavior of Impulse Radiating Antennas in a number of different
ways.  In addition, we have compared the response of IRAs to TEM horns.  We find that IRAs are best for
radiating fast risetime pulses because their step response does not roll off at the high end.

It is appropriate to note a number of caveats in the analysis presented here.  We have assumed an
ideal matching circuit in the IRA, as well as an idealized  feed circuit in the TEM horn.  We have made no
attempt to design the matching circuits or baluns, (although some ideas on baluns for IRAs are provided by
Baum10).  Furthermore, the high-voltage properties of the two antennas have been ignored.  Nevertheless, we
can draw some important conclusions from the above data.  The data suggest that an IRA is a promising an-
tenna for radiating fast transient pulses.  When comparing antennas of similar size (largest dimension), the
IRA  has a considerable advantage in performance.  When comparing antennas of similar aperture area, the
IRA still has clear advantages at the high end, since it does not suffer the high-frequency rolloff problem of
the TEM horn.  Finally, the IRA has some desirable directionality at low frequencies.
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