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Abstract

A continuously graded dielectric material may be used to compensate a coaxial trans-
mission line bend in order to allow it to support a TEM mode. The characteristic impedance of
such a bend is a critical design parameter. Here we derive an expression which can be used to
calculate that impedance from a finite element solution of the relevant potential equation. We
assume no variation in material properties or geometry in the azimuthal direction, the direction
of propagation through the bend. We further assume that the space between perfect inner and
outer conductors within the bend is filled with a non-magnetic, linear, isotropic, lossless dielec-
tric material whose permittivity varies inversely as the square of the radius of curvature. We
demonstrate our approach by impedance calculations for canonical problems for which there are
known solutions. We also consider bends compensated by layered approximations of graded di-
electric materials.
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1. Introduction

In principle, a continuously graded dielectric material may be used to compensate a
coaxial transmission line bend in order to allow it to support a pure TEM mode. The effective
impedance of such a bend is a critical design parameter. Here we derive an expression which can
be used to calculate that impedance from a finite element solution of the relevant potential
equation. In the course of that derivation, we obtain a similar expression applicable to a layered
approximation to the continuously graded bend and an expression applicable to a straight
transmission line section.

For the continuously graded bend, we assume no variation in material properties or
geometry in the azimuthal (ϕ) direction, the direction of propagation through the bend; the z-axis
is an axis of rotational symmetry. We further assume that the space between inner and outer
conductors within the bend is filled with a non-magnetic, linear, isotropic, lossless dielectric
material whose relative permittivity varies inversely with the square of the radius of curvature as

ε ε
ε

ψ
ψr = = F

HG
I
KJ0

2
max (1)

where ψ  is the radius of curvature in the (ψ , ϕ, z) coordinate system, and ε0  is the permittivity
of free space. This variation compensates for the variation of arc length with the radius of
curvature and thus preserves the wavefront as it propagates through the bend. Since the
wavefront is preserved, its angular propagation velocity, vϕ , is independent of the radius of
curvature, and we can obtain the characteristic impedance from

Z
v CC = 1

ϕ ϕ
(2)

where Cϕ , the capacitance per unit azimuth angle, is obtained from the finite element solution.

2. Derivation

We begin our derivation with Maxwell's equation relating the divergence of the electric
displacement to the net free charge density,

∇ ⋅ =
→
D ρ (3)
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Since we assume our medium is linear and isotropic, we have D E
→ →

= ε , where E
→

is the electric
field intensity. For now, we make no assumptions regarding either symmetry or the spatial
dependence of the permittivity. We assume that the only charges are those induced by
application of an arbitrary voltage, V V= 0 , to one of the conductors, while the other is grounded
(V = 0 ). These are Dirichlet boundary conditions. The conductors, forming the surface, S, bound
the volume between them, the domain, Ω . Within Ω , the charge density is zero and the electric
field is given by the negative of the potential gradient. Thus, the displacement equation, (3),
becomes

∇ ⋅ ∇ =ε Vb g 0 (4)

Since we seek an estimate of the capacitance from a finite element solution of (4), we
require a functional, W(V), which is stationary about V u= , the correct solution to this equation
and its boundary conditions. We multiply (4) by V and integrate over Ω  to obtain

V V d∇ ⋅ ∇ =z εb g Ω
Ω

0 (5)

Now, using the vector identity, ∇ ⋅ = ∇ ⋅ + ∇ ⋅
→ → →

( )φ φ φA A A , with φ= V  and A V
→

= ∇ε , (5)
becomes

ε ε∇ ⋅ ∇ − ∇ ⋅ ∇ =z zV V d V V db g b g b gΩ Ω
Ω Ω

0 (6)

Application of the divergence theorem (Green's theorem in space) to the second integral in (6)
produces the variational or weak form of the potential equation,

ε ε∇ ⋅ ∇ = ⋅ ∇z zV V d n V V dS
S

b g b g b gΩ
Ω

$ (7)

Recognizing the integral over Ω  in (7) as twice the energy stored in the electric field, we write

W U U U db g b g b g= ∇ ⋅ ∇z1
2

ε Ω
Ω

(8)

where, if U is (merely) continuous in Ω  and satisfies (just) the Dirichlet conditions on the
boundary, S, of Ω , then the functional, W(U), is stationary about U u= , the solution of (4) [1].

We now specialize to an axially symmetric geometry. Assuming no ϕ-dependence, we
carry out the integration over ϕ in (8) to obtain the stored energy per unit azimuth angle as
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W U
W U

U U d dzrRϕ π
ε ε ψ ψb g b g b g b g= = ∇ ⋅ ∇z2 2

0 (9)

where R is a ϕ-plane slice through Ω , and we have factored out the constant permittivity of free
space. Since the same stored energy is also expressed by

W U C U Vϕ ϕb g b g b g= 1 2 0
2 (10)

we have for the capacitance per unit angle

C U
V

I Uϕ
εb g b g= 0

0
2 (11)

where we have defined the functional

I U U U d dzrR
b g b g b g= ∇ ⋅ ∇z ε ψ ψ (12)

If we compare (12) with (8), the functional minimized by the solution of (4), then (12) becomes
recognizable as a functional which is minimized by the solution, U u z= ψ ,b g, of the two-
dimensional potential equation for an axially symmetric geometry

∇ ⋅ ∇ =ψ εr ub g 0 (13)

This is a significant result. Except for the requirement for axial symmetry, the spatial dependence
of the permittivity is arbitrary. Thus, solutions of (13) form a more general class than those for
which (1) holds. In particular, we later show how (13) can be applied to a structure in which
discrete layers of dielectric materials are used to approximate the spatial dependence of (1).

Next, the solution of (13) is expanded in a series of dimensionless basis functions, α j , as

u z U zi i j j i i
j

N
ψ α ψ, ,b g b g=

=
∑

1
(14)

The basis functions are defined on a triangular mesh, such that they are continuous in R and
satisfy the Dirichlet conditions on the boundary of R. Additionally, they are zero at all nodes
except at ψ i iz,b g, where they take on the value of unity. This leads to the result that
u z Ui i iψ ,b g=  the potential at the i-th node. Then, use of (14) in (12) leads to
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I u U U Si j
ji

ij( ) = ∑∑ (15)

where
S d dzij r i j= ∇ ⋅∇zψ ε α α ψ (16)

In matrix form, the functional, I(u), may be expressed as

I ub g= U SUT (17)

Here, U,  the finite element solution of (13), is the vector of coefficients, U j . The N × N finite
element matrix, S,  of “energy” inner products is sometimes called the Dirichlet matrix or, in
problems of elasticity, the stiffness matrix. In the present case, its dimensions are length.
Contained within it are any spatial dependencies of the permittivity.

We can now combine (11) and (17) to obtain the capacitance for an axially symmetric
system from the finite element solution of (13) as

C
V

ϕ
ε= 0

0
2 U SUT (18)

This is as far as we can proceed rigorously without imposing an additional constraint on the
spatial dependence of the permittivity. Apart from the requirement of no ϕ-dependence, (18)
admits any well-behaved spatial dependence for the permittivity. Unless (1) is obeyed, however,
the propagation velocity will vary across the region, R, and no characteristic impedance in the
sense of (2) will be defined.

To proceed further, we must require that the permittivity obey (1), so that the angular
propagation velocity will be a constant, and the characteristic impedance will be given by (2).
Then, since the propagation velocity, v, at ψ ψ= max , is c, the speed of light, we have for the
constant angular velocity, v cϕ ψ= max . Furthermore, since Z c0 01= εb g, where Z0  is the
impedance of free space, (2) can be written as

Z
Z

CC = 0 0ε ψ
ϕ

max (19)

Using (18), we obtain

Z Z
V

C =
F
HG

I
KJ0

0
2ψ max

U SUT (20)
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which is independent of V0 , since U  contains V0  as a linear factor. Note that the solution of (13)
may be used in this expression to obtain an estimate of the characteristic impedance when (1) is
true in only an approximate sense, for example, when dielectric layers having different constant
permittivities are used to approximate the ψ  dependence in (1).

When (1) is rigorously true, it becomes convenient to obtain alternate forms of some of
the expressions introduced above, forms which directly incorporate the analytic form of the
permittivity profile. We return to the two-dimensional potential equation for axial symmetry,
(13), and to the functional minimized by its solution, (12). Substituting (1) for εr , we obtain

I U U U d dz
R

b g b g= ∇F
HG

I
KJ⋅ ∇zψ ψ ψmax

2 1 (21)

for the functional, and

∇ ⋅ ∇F
HG

I
KJ=1 0ψ u (22)

for the potential equation. This equation is equivalent to the expression derived by Baum in
[2, Appendix A]. Its solution minimizes the integral over the region, R, in (21). The elements of
the Dirichlet matrix, (16), now become

S Kij ij= ψ max
2 (23)

where

K d dzij i j= ∇ ⋅∇z 1
ψ α α ψ (24)

Thus, (17), the matrix form of I(u), becomes

I ub g= ψ max
2 U KUT (25)

where K  is the assembled matrix of Kij  elements, with dimensions of inverse length. The finite
element solution of (22), U,  is the vector of coefficients, U j . The capacitance corresponding to
the finite element solution, (18), becomes

C
V

ϕ
ε ψ= 0

2

0
2
max U KUT (26)
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Finally, since the angular velocity of propagation is a constant, we can substitute (26) in (19) to
obtain

Z Z
V

C =
F
HG

I
KJ0

0
2

ψ max U KUT (27)

as the characteristic impedance of the continuously graded structure. Again, since U  contains V0
as a linear factor, the impedance is independent of the arbitrary applied voltage.

Since the impedance scales as ψ max
− 1  in (27), it becomes convenient to express lengths in

units of ψ max . In terms of such scaled lengths, ψ max  becomes unity, so that with the choice of
V0 10= . , a normalized impedance can be calculated as

f Z Zg C n n n= =
−

0
1

U K UTe j (28)

where the potentials are expressed as fractions of the applied voltage and the Dirichlet matrix,
Kn , is now dimensionless.

The MATLAB® software package [3] and its Partial Differential Equation Toolbox [4] can
be used to set up and solve the problems indicated by (13) and (22), using the finite element
method. The MATLAB output, which includes both the solution vector and the Dirichlet matrix,
can then be used to obtain the capacitance from (18) or (26), and the impedance from (20) or
(27).

For problems described in terms of scaled lengths, it follows from (28) that the
impedance is invariant to changes in the scale length parameter, ψ max . It depends only on the
relative lengths and curvatures expressed by Kn . Conversely, from (27), any specific
transmission line geometry gives rise to a family of bends differing in impedance, as dictated by
ψ max  and the resultant permittivity content. As a result, a relatively small number of problems
spanning the range of realizable curvatures may suffice to characterize any specific cross section
shape. We anticipate presenting an example of such a shape characterization in a future note.
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3. Solutions of Canonical Problems

We begin by considering a problem for which
an analytical solution exists in both curved and purely
rectangular geometries— the parallel plate transmis-
sion line in which the plate width greatly exceeds the
plate separation and fringe fields at the plate edges are
neglected.

In [5], Baum develops an analytic solution for
the impedance of an H-plane bend filled with a purely
dielectric material whose permittivity varies continu-
ously with the radius of curvature, as in (1). Since that
solution neglects fringe fields, the only electric field
component is directed normally to the conductor sur-
faces; and, from [6, Appendix A], we obtain

Z Z
z

C =
F
HG

I
KJ0

2 1

∆
ψ ψ ψmax elog b g (29)

where the plate separation is ∆ z , the plate width is
ψ ψ2 1−b g, and 0 1 2< < ≤ψ ψ ψ max . By way of ex-

ample, we choose ∆ z = 0 05. ,  ψ 1 01= . ,   ,ψ 2 0 6= .
and ψ max .= 10,  obtaining ZC = 10 51. Ω .

Neglecting fringe fields, the im-
pedance of a straight parallel plate trans-
mission line with the same cross section is
given by

Z Z
z

C
r

=
−

F
HG

I
KJ0

2 1

∆
ε ψ ψb g (30)

where ε ε εr = 0  is the (constant) relative
permittivity. By solving (30) for εr , we
find that the straight line will have the
same characteristic impedance as the
curved one, if εr = 12 83. . This choice thus
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Figure 1. Parallel plate H-plane bend.

There is rotational symme-
try about the z-axis.

Figure 2. Relative permittivity for the parallel
plate H-plane bend with ψ max .= 10 .
The plotted point indicates the permit-
tivity required for a matched straight
section of transmission line.
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becomes a design criterion for matching straight and curved sections of the transmission line. We
also use it below in obtaining a numerical solution for the straight parallel plate problem.

To obtain finite element solutions for the curved and straight parallel plate problems, we
define the two-dimensional problem domain to be the rectangular ∆ ∆ψ × z  area between the
two conducting plates. We impose the arbitrary Dirichlet boundary conditions, V V= =0 10.  on
the top plate and V = 0 on the bottom plate. Along the ψ ψ1 2 and  edges, we impose the
Neumann condition, )n V⋅∇ = 0 . This eliminates fringe fields by forcing the electric field there to
be normal to the plates. For the curved plate geometry, we solve (22) for the potential and obtain
the impedance from (27). For the straight plate geometry, we solve ∇ ⋅ ∇ =εr Vb g 0 , a two-
dimensional rectangular version of (4) with the permittivity of free space factored out. An
approach similar to that used to obtain (20) or (27) leads to

Z
vC

Z
V

C
r= =

′

F
HG

I
KJ

1
0

0
2 ε

U S UT (31)

where v is the velocity of propagation in the dielectric medium, C is the capacitance per unit
length of transmission line, and V0  is the potential difference between the conducting plates.
Here, we have used ′S  in the vector-matrix expression to emphasize that this is not the same
Dirichlet matrix as the one appearing in (17), (18), and (20). For both the curved and straight
parallel plate transmission lines, the impedance obtained from the finite element solutions is
10.52 Ω , in agreement with the analytic results.

Next we consider coaxial geometries. For a straight coaxial line with uniform dielectric
and conductors having circular cross sections, we have the familiar analytic expression

Z Z
b
aC

r
e= F
HG

I
KJ0

1
2π ε

log (32)

where a is the radius of the inner conductor and b is the radius of the outer conductor. Once
again, (31) is used to obtain the impedance from the finite element solution. For a curved section
of coax compensated by a dielectric as described by (1), there is no analytic solution. As was the
case for the curved parallel plate transmission line, the finite element result is obtained from
(27).

As an example, consider a curved section of coaxial cable with a = 0.025, b = 0.25, axis
centered at (ψ , z) = (0.35, 0.25), and permittivity profile as described by (1), with ψ max .= 10 .
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The z-coordinate of the axis is completely arbitrary. As with the curved parallel plate, the choice
of ψ max .= 10  effectively normalizes the radius of curvature, and in conjunction with the
conductor radii, determines the range of permittivities within the coax (Figures 3 and 4).

The impedance obtained from the finite element solution is 46.02 Ω . From (32), we can
obtain an analytic result for the constant relative permittivity required to produce the same
impedance in a straight section of coax having the same conductor size ratio (b/a = 10). The
result is εr = 8 998. , a value that occurs in the curved coax at ψ = 0 33. . If we use this relative
permittivity in a finite element solution for the straight coax, (31) produces the consistent result,
ZC = 45 96. Ω . Thus, this choice of permittivity can be used to impedance-match straight and
curved sections of the coaxial line.

We now consider coaxial geometries in which the center conductor has a circular cross
section (diameter, d), while the outer conductor has a square cross section (length of side, D). For
a straight section of such a transmission line filled with a uniform dielectric, [7] offers the closed
form expression:
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Figure 3. Geometry of a coaxial
transmission line with
circular cross section.
For a curved section, the
horizontal axis repre-
sents the radius of cur-
vature.

Figure 4. Relative permittivity for the coaxial H-
plane bend with ψ max .= 10 . The coaxial
axis is on a plane of constant z, with
radius of curvature, ψ = 0 35. . The per-
mittivity required for a straight coax of
the same cross section and impedance is
indicated by the plotted point at
ψ = 0 33. .
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(33)

Again, the finite element result for this straight coaxial geometry is obtained from (31).
Similarly, if we replace this straight coax by a curved section compensated by a dielectric having
the permittivity profile described by (1), we obtain a finite element result from (27).

We employ, as an example, a coax with the same parameters as used above, with
εr = 8 998. , D = 2b and d = 2a, so that ρ = 10. The geometry is that of Figure 3, with the outer
conductor boundary replaced by its circumscribed square. For the straight coax, (33) produces
ZC = 47 19. Ω . The finite element result from (31) is 47.47 Ω . For the compensated curved coax,
(27) gives the result, ZC = 47 23. Ω . Once again, the finite element method produces a result
consistent with a known closed-form solution. Moreover, for both straight and curved coaxial
structures, the impedance of the circular geometry is comparable to that of the square geometry.

As a final example, we consider the layered approximation to a compensated bend in the
square coaxial structure depicted in Figure 5. We retain the same parameters as in the previous
square coax example, but partition the ψ -dimension into five equal-width dielectric bands. Each
band is of width 0.1 and is assigned a constant relative
permittivity equal to ψ − 2  at its midpoint. In this way,
the permittivity profile is a discrete approximation of
(1). The finite element method is used to solve (13) by
assigning the appropriate value of εr  to each of the
five dielectric strip sub-domains. The approximate
impedance, obtained from (20), is 47.70 Ω , in
excellent agreement with the result for the continu-
ously graded square coax.
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Figure 5. Geometry for a five-layer
approximation to a graded
coaxial bend.
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4. Concluding Remarks

The derivation presented in this note provides a basis for use of finite element solutions
of the potential equation to obtain the capacitance of curved transmission line sections in axially
symmetric geometries. For systems in which the permittivity varies as the inverse square of the
radius of curvature, TEM modes propagating in the azimuthal direction may be supported. In
those cases, the approach described in this note can also be used to obtain a characteristic
impedance for the transmission line structure. Numerical results indicate that even a rather coarse
layered approximation of the ideally graded dielectric may closely reproduce this impedance.†

It should be noted that the approach developed here can be applied to any TEM
transmission line geometry which can be described in two dimensions. The shape of the
conductor cross sections is arbitrary. For curved sections, we must add the requirements of axial
symmetry and a permittivity profile as in (1). The impedance is invariant to changes in scale
length when that length is defined as the radius of curvature at which the relative permittivity is
unity, ψ max . On the other hand, if the cross section and radii of curvature are held constant, the
impedance varies inversely with ψ max .

In the examples presented here, we have applied the finite element method in two
dimensions to both curved and straight transmission line sections. Since most practical systems
will involve both curved and straight sections and junctions between the two, the interfaces
between curved sections with non-uniform permittivity and straight sections with uniform
permittivity must ultimately be considered.

                                                
† In Appendix A, we re-examine the more complex, multi-region stripline geometry originally treated in

[6]. We find that the approximation used in [6] is in agreement with the current method.



13

Appendix A. Compensation of a Stripline Bend by a Layered Approximation of a Graded
Dielectric Material

In [6], we presented experimental and numerical results for a stripline bend compensated
by a layered approximation of graded dielectric material. There, we justified a straight strip
approximation to the impedance of the bend by comparisons with related problem configurations
and by comparison to a direct experimental measurement of the impedance. Here we re-examine
that work in light of the derivation presented above.

Our finite element solution for the stripline in [6] employed an equivalent of (31) to
calculate the impedance. There, we replaced the εr  of (31) with an effective permittivity
obtained by averaging the permittivities of the dielectric materials surrounding the strip. Since
the electric field was predominantly parallel to the dielectric interfaces, we argued that this
averging approach was justifiable, as the strip and graded dielectric layers were like a parallel
array of capacitors. The finite element model (Figure 6) defined a sub-domain for each dielectric
material and solved the Laplace equation, ∇ ⋅ ∇ =εr Vb g 0 , in rectangular geometry, over all sub-
domains. With an effective relative permittivity of 3.1, the calculated impedance was 27.93 Ω .

As a result of the expressions derived in
this note, we no longer require the straight strip
approximation. The correct potential equation
for the axially symmetric geometry is
∇ ⋅ ∇ =ψ εr ub g 0 , derived as (13) above. As-
suming that the angular propagation velocity (in
the ϕ-direction) is approximately constant, the
characteristic impedance is properly given by
(20) as 28.57 Ω . Thus, for this problem, the
straight strip approximation was a good ap-
proximation. Note that the impedance of the
stripline bend would be 26.44 Ω , if filled with a
continuously graded dielectric obeying (1). This
follows from the solution of (22) and from (27).

Figure 6. Finite element model of a five-
layer graded dielectric bend.
Relative permittivities used for
the sub-domains are indicated.
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