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Abstract

A critical component of a high-voltage Half Impulse Radiating Antenna (HIRA) is the
lens, which is located at the feed point.  This lens is used to match an electrically large coaxial
waveguide to the feed arms of a Half IRA.  It consists of a prolate spheroidal surface at one
interface, and a quartic surface on the other interface.  We describe here the design principles of
this lens, and we provide example solutions.
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I. Introduction

The availability of single-ended high-voltage pulsers has led to the demand for suitable
antennas to radiate the signal.  A candidate antenna for this application is the Half Impulse
Radiating Antenna (HIRA).  This antenna was first proposed in [1], and a variation of this was
described in [2].

Probably the most complicated part of this antenna design is the lens.  This lens is used to
convert a plane wave in a coaxial waveguide to a spherical wave which is launched onto the
conical feed arms.  Normally, one would want to keep this region electrically small, but high
voltages preclude that possibility.  An idealized version of the lens was proposed in [3], but this
version required a material whose dielectric constant could be varied continuously throughout the
medium.  This design also required guiding conductors spaced close together, on sheets of
constant theta, to guide the waves.  In this paper we propose a lens that is built with a simple
homogeneous dielectric material, so it will be more practical to build.

An example of a typical HIRA is sketched in Figure 1.1.  It consists of an oil-filled
coaxial feed, which transitions into the feed arms of the antenna.  The antenna itself consists of
two conical feed arms feeding half a reflector.  We assume an F/D ratio of 0.25, in order to
maintain rotational symmetry.  The input impedance to the feed arms is typically 100 Ω in air, or
about 67 Ω in the oil-filled coaxial feed.  This particular sketch includes an oil cap above the
ground plane, but other designs are available without the oil cap.  The outer edge of the oil cap is
a spherical polyethylene shell, which has a dielectric constant close to oil, so it does not change
the direction of the field.

For the purposes of our calculations, we assume a lens feed and antenna with a single
conical arm.  Normally, one will want to split the center conductor into two arms, but we can
only solve the problem if it is rotationally symmetric.  The solution to the rotationally symmetric
case provides a good approximation to the more difficult three-dimensional problem.

Sketches of two possible lens designs are shown in Figure 1.2.  The first sketch shows a
design which includes an oil cap.  We will refer to this as an oil-lens-oil design.  The second
design has no oil cap and it simply has air or SF6 at its output.  We refer to this design as the oil-
lens-air design.  The equations for both designs are quite similar, and we provide equations
general enough to include both.

The net effect of the lens is to convert a plane wave in a coaxial geometry to a spherical
wave in a conical geometry.  The focus of the spherical wave is on the ground plane, at the center
of the coaxial feed, and at the focus of the paraboloid.

In this paper we provide a complete derivation of the lens equations.  We also provide
design principles, and we show some examples.  Let us begin now with derivations of the lens
equations.
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Figure 1.1  A sketch of the Half IRA, shown here with an oil cap.
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Figure 1.2.  Two lens designs, including an oil cap (top) and without an oil cap (bottom).
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II.  Lens Equations

To design the lens, it is first necessary to derive the equations for the two interfaces,
Interface #1 and Interface #2, as shown in Figure 1.2.  The first interface is a simple prolate
spheroid, and the second is a quartic surface, which is just a fourth-order polynomial.  Although
these were derived earlier in [4], we provide here derivations that are somewhat simpler for our
special case.

A.  Equations for the Interface #1:  Plane Wave to Spherical Wave

The first interface converts an incident plane wave to a spherical wave.  It is a prolate
spheroid [4, Section 3], or ellipse of revolution.  A diagram of the relevant parameters is shown
in Figure 2.1.  In the Ψ–z plane the equation of the surface is derived from transit-time
considerations as

ε ε2 1( ) ( )� − = −r z (2.1)

This is just another way of saying that the ray through the center and an offset ray both must
arrive at the circle at the same time.  Let us make the substitution

q q= <ε ε1 2 1/ , (2.2)

Figure 2.1.  Geometry for Interface #1:  Prolate spheroidal interface for converting a plane wave
to a spherical wave.
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In addition, we expand r into its z and Ψ components as

r z2 2 2= + +( )� Ψ (2.3)

where Ψ is the radial cylindrical coordinate.  (Note that Ψ is sometimes represented by other
authors as ρ.)  Combining the above three equations we find

( ) ( )� �+ + = +z q z2 2 2Ψ (2.4)

This is the equation to be solved.

By expanding and simplifying the above equation, we can find a simpler expression.
After completing the square, we find
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we arrive at the final equation

( )z a
a b
+ + =

2

2

2

2 1Ψ (2.7)

This is immediately recognizable as a simple ellipse with major and minor axes of a and b,
respectively, and offset in the z direction by –a.  Note also that all rays in the second medium
originate at one of the focuses of the ellipse.

B.  Equations for Interface #2:  Spherical Wave to Another Spherical Wave

The second interface converts a spherical wave centered at (–�1, 0) to another spherical
wave centered at (–�2, 0).  A diagram of the rays to be traced is shown in Figure 2.2.  Once again,
from transit time considerations, we have

ε ε ε2 1 3 2 2 2 1r r+ − =( )� � (2.8)
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This was derived by enforcing the condition that a ray through the center and a ray through an
off-center path must arrive at the circle at the same time.  This simplifies further as
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ε ε ε
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− = −
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� �
(2.9)

We can now expand r1 and r2 in terms of their z and Ψ components as
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Combining the above two equations, we now have the quartic equation that describes the surface,

ε r z z2 1
2 2

1 2
2 2

2( ) ( )+ + −L
NM

O
QP = + + −L
NM

O
QP� � � �Ψ Ψ (2.11)

This corresponds to [4, equation 4.9].  To generate a curve from the above equation, we choose a
set of Ψ values, and solve for z numerically.  An explicit form of the surface is also available
in [4].

Figure 2.2.  Geometry for Interface #2, a quartic surface for converting a spherical wave centered
at (–�1, 0) to another spherical wave centered at (–�2, 0).
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III.  Lens Design Equations

We now begin the derivation of the overall lens equations.  As a starting point, we
express the equations of the two interfaces in a shifted coordinate system, as shown in Figure 3.1.
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Figure 3.1.  Lens design parameters.

The equations of the ellipse (prolate spheroid when rotated about the z axis) are
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(3.1)

Note that we use d to represent the focal distance instead of c, to avoid a conflict with the symbol
for the speed of light.  From (2.6) we know the dimensions of the ellipse are described by

b a d ar
r

r/ / , / , /= − = =1 1 1
1

1
1 2 1ε

ε
ε ε ε (3.2)

Furthermore, the equation for the quartic surface is
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This is our starting point in the procedure.

To design the lens, we choose ε2 and ∆θ1 as parameters.  Typically we already know the
relative dielectric constants ε1 and ε3, because it has been decided in advance that oil will be at
the input (ε1 = 2.2) and either oil or air will be at the output (ε3 = 2.2 or 1).  Once these choices
have been made, one can only adjust ε2 and ∆θ1.  The dielectric constant of the lens is controlled
by the choice of material from which it is machined.  Thus, the design equations will be
expressed in terms of ε2 and ∆θ1.  We will also provide assistance in choosing these two
parameters, and then solve some examples.

In fact, the solution process is a bit simpler if one chooses ε2 and �2/�1 (instead of ε2 and
∆θ1) as parameters.  We solved the problem this way originally, but we found more physical
insight when ∆θ1 is a parameter, because this is the angle the extreme ray is bent at Interface #1.

Finally, we note that the notation is a bit complicated, so we review the definitions of the
dielectric constants.  There are three relative dielectric constants, ε1, ε2, and ε3, representing the
regions before, inside and after the lens, respectively.  In addition, since all of our equations are
dependent only upon a ratio of dielectric constants between adjoining regions, we have defined
two dielectric constant ratios as

ε ε ε ε
ε ε ε ε

r r

r r

1 2 1 1

2 2 3 2

1
1

= >
= >

/ ,
/ ,

(3.4)

These can easily be remembered if one recalls that ε2 is the highest dielectric constant of the
three, and each of our dielectric constant ratios is just the ratio of the high dielectric constant to
the low dielectric constant at the first and second interface.

A.  Design of Interface #1

The first step in the analysis is to find Ψ1, as shown in Figure 3.1, based on dielectric
breakdown considerations.  In a typical problem, one might have to allow the coax to be large
enough to carry a certain peak power, without exceeding some limit on the electric field on the
center conductor.  The procedure for doing so has already been described in [5].

Next, we have to find a/Ψ1 for the given parameters of εr1 and ∆θ1.  Starting from (3.1),
we substitute (z, Ψ ) = (z1, Ψ1) and rearrange to find
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where we have used d a b= −2 2  in the final step.  Substituting the value of b/a from (3.2),
we have
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Next, we shift the final term on the right to the left side, and square both sides.  After
simplifying, we find
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This can be solved for (a/Ψ1) since it is just a quadratic equation.  After doing so, and after
applying the trigonometric identity cot ( ) csc ( )2 21θ θ+ = , the result simplifies to

a r

r
rΨ
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−

−
ε

ε
ε θ θcsc cot( )b g (3.8)

This is the result we needed.  Since Ψ1 has already been determined, one can find a from (3.8),
and b and d from (3.2).  Note that the solution to the quadratic equation actually generates a
solution with a “±” sign in front of the cosecant term above.  But the minus sign makes no
physical sense, because a/Ψ1 cannot be negative.

At this point, the absolute size and shape of the ellipse is defined, but its location on the z
axis is still  unknown.  For this, we need to solve the quartic equation.
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B.  Design of Interface #2

The ultimate goal in the design of the quartic surface is to calculate �2/�1, or equivalently
�1/�2.  To do so, we begin by substituting (z, Ψ ) = (0,Ψ2) into the quartic equation, (3.3).  After
dividing both sides by �1, we find
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We now need to solve for Ψ2/�1.  To do so, we shift the second term on the left side to the right
side, and square both sides.  After much rearranging, and after solving a quadratic equation, we
find
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We now need to get Ψ2/�1 into a form that is related to ∆θ1.  To do so, we know
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Combining the above two equations, we find
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The only unknown in this equation is �2/�1.  The simplest method to obtain it is to solve the
above equation numerically for �2/�1.  For the cases we tried, convergence was easily obtained
starting from any reasonable initial guess.  It is, however, possible to solve this equation
analytically.  After a bit of work, we find
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Note that the term in square brackets above is actually found to be 1 1± sec( )∆θ , which comes
from two solutions to a quadratic equation.  By experimenting with both signs, and after
comparing to the numerical solution of (3.12), we find the minus sign is correct.

All that is left is to specify Ψ2, and it turns out that there is some flexibility in choosing
this parameter.  The only restriction is that it must be large enough so that the two interfaces do
not intersect near the center.  To enforce this, we see by inspecting Figure 3.1 that
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Now, using the fact that d a r/ /= 1 1ε , we rearrange to find a lower bound on Ψ2 of
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where a/Ψ1 is provided in (3.8) and Ψ2/�1 is provided in (3.10).  This is alternatively expressed
as
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Thus, any value of Ψ2 greater than Ψ2min is acceptable.  Note that a slightly smaller Ψ2 will be
acceptable if there is a center conductor, because the two interfaces first touch at the center
conductor.

Since we now have a value for Ψ2, we can use (3.10), to solve for Ψ2/�1.  This leads to
�1, and since �1/�2 is known, we have �2 as well.  Thus, the entire problem is solved, for the
given set of parameters ε2 and ∆θ1, and assuming ε1 and ε3 are already chosen.  In the section
that follows, we provide assistance in choosing ε2 and ∆θ1.
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IV.  Limits on ∆θ∆θ∆θ∆θ1

Having calculated the two surfaces in terms of the dielectric constants and ∆θ1, we now
explore how to choose these values intelligently.  Assuming that ε1 and ε3 are already chosen,
then for a given ε2, one can identify both maximum and minimum limits on the values of ∆θ1.  In
addition, one can rule out values of ε2 below a minimum value, because no solution is possible
there.

A.  Maximum ∆θ∆θ∆θ∆θ1 Based on Grazing Incidence at Interface #1

Let us consider the maximum possible bend at Interface #1 for a given εr1 = ε2/ε1.
Theoretically, one can bend the extreme ray by the greatest angle if it is incident at grazing angle,
or θi1 = 90o.  Of course, this is not a good choice, because the E-field transmission coefficient is
zero there.  But it does place an absolute limit on how large ∆θ1 can be.  For this case, the
transmitted angle is

θ εt r1 11= arcsin /d i (4.1)

So the maximum bend one can achieve at Interface #1 is

∆θ ε1 190 1Max
o

r= − arcsin( / ) (4.2)

For a given εr1 = ε2/ε1, this limits the choice of ∆θ1  We will plot this function later, when we
also have a minimum value of ∆θ1.  Because we assume here grazing incidence, this is a loose
upper bound, and one must avoid it in practice.

B.  Minimum ∆θ∆θ∆θ∆θ1 Based on ����2/����1 = 0 in the Quartic Equation

If one experiments with the quartic equation a bit, one sees readily that it is difficult to
decrease ∆θ1 as much as one would like.  For a given εr2 = ε2/ε3, one obtains the minimum ∆θ1
in the limit as � �2 1 0/ → .  One can then calculate the resulting ∆θ1 with the understanding that
this is the maximum achievable for a given εr2.

To see the effect, we substitute (z, Ψ) = (0, Ψ2) into the quartic equation, (3.3).  We then
take the limit as � �2 1 0/ →  by substituting �2 = 0.  From this we find

ε εr r2 1
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We move the second term to the right hand side, square both sides and simplify, to find
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Now, ∆θ1 is determined from

cot( )∆
Ψ
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Combining the above two equations, we have a minimum ∆θ1 of
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KJarccot (4.6)

We now have minimum and maximum values for ∆θ1 as a function of ε2.

We can plot the minimum and maximum values of ∆θ1 as a function of ε2 for two
specific cases.  The two cases we consider are the oil-lens-oil design and the oil-lens-air design,
and the results are shown in Figure 4.1.  In both designs, there is a crossover, below which no
solution is possible.  For the oil-air-oil design, the crossover occurs at ε2 = 7.44, and for the oil-
lens-air design this occurs at ε2 = 4.97.  Below the crossover values, the lens has a dielectric
constant too low to bend the rays sufficiently.  Thus, to allow some design flexibility, one will
want to use somewhat higher values of εr than the minimum values.

Note that there appears to be no particular penalty for being too close to the minimum
value of ∆θ1, for a given ε2.  In this case, �2/�1 is zero, but that does not affect lens performance.
In fact, imposing �2/�1 = 0 may have some advantage, if one wants to keep the lens thin at its
center.  This can happen if one wants to keep the feed arm attachment outside the lens.  On the
other hand, having a ∆θ1 near the maximum implies grazing incidence for the extreme ray at
Interface #1.  Thus, the maximum value of ∆θ1 must be avoided.  This implies that one must use
an ε2 somewhat higher than the crossover value.

When comparing the two plots, we find that the oil-lens-air design has a lower crossover
than the oil-lens-oil design.  This implies that a lower dielectric constant can be used for the lens.
This is an advantage, because a lower dielectric constant leads to less reflection loss.
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Figure 4.1.  Minimum and maximum values of ∆θ1 for the oil-lens-oil case (top) and the
oil-lens-air case (bottom).  Oil is assumed to have a dielectric constant of 2.2.
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V.  Some Examples

Let us now consider an example in which an oil-filled coaxial structure is used to feed a
100 Ω HIRA, with a lens of dielectric constant 11.  A further assumption is that one can sustain a
peak electric field in oil of 1 MV/cm on the center conductor without breakdown (approximately
valid for pulses ~1 ns in duration).  We calculate the lens shape for two different configurations,
an oil-lens-oil configuration and an oil-lens-air configuration.

First, we calculate the parameters for the feed line, which is shown in Figure 5.1.  Since
the antenna impedance in air is 100 Ω, the impedance of the coaxial feed in oil is 67 Ω, assuming
the conductors are continuous at the interface.  We find the peak voltage using

V Z Pcmax max= (5.1)

and we find a maximum voltage of 2.6 MV.  To find the outer radius, we use [5, eqn. 4.5]

E E V

E e
f

norm

norm

f

g

g

max =

=

Ψ1
2

1

1

2

π ε

π ε

(5.2)

where fg = Zc/(376.727 Ω) and Ψ1 is the outer radius, so Enorm is found to 3.2 at 67 Ω.
Assuming a maximum electric field in oil of Emax = 1 MV/cm, we then find an outer radius of
8.3 cm.  Finally, the radius of the center conductor is calculated from

Ψ
Ψ

1 2 1

o

fe g= π ε (5.3)

where Ψo is the inner radius.  Thus, for fg = 67/377 and ε1 = 2.2, we have Ψ1/Ψo = 5.2.  Thus, a
reasonable feed geometry is Ψ1 = 8.5 cm and Ψo = 1.62 cm, for the inner and outer conductors,
respectively.

Next, we choose the lens dielectric constant and ∆θ1 in a manner consistent with the
known limitations.  We would like to choose values that will work with both the oil-lens-oil and
the oil-lens-air configurations.  After consulting Figure 4.1, it is found that the values of ε2 = 11
and  ∆θ1 = 50o are consistent with the known limitations for both cases, so we use these values.

Now, we solve the oil-lens-oil configuration.  From (3.8) we find a/Ψ1 = 1.16, so a =
9.88 cm.  From (3.2) we find b = 8.84 cm and d = 4.42 cm.  From (3.13) we find �1/�2 = 25.29.
Next, we find from (3.16) the minimum value of Ψ2 is 16.37 cm, so we choose Ψ2 = 17 cm, for
which Ψ2/Ψ1 = 2.0.  From (3.10) we have Ψ2/�1 = 1.145, so �1 = 14.85 cm and �2 = 0.59 cm.
Using these values, we have plotted the complete lens on the top in Figure 5.2.
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Figure 5.1.  A coaxial geometry.

Next, we repeat the process with the oil-lens-air design.  The dimensions of the resulting
ellipse are the same as before, i.e., a = 9.88 cm, b = 8.84 cm and d = 4.42 cm.  Furthermore, we
find �1/�2 = 4.56, and the minimum value of Ψ2 is 13.30 cm.  Once again, we choose Ψ2 =
17 cm, for which Ψ2/Ψ1 = 2.0.  Finally, we have Ψ2/�1 = 0.930, so �1 = 18.28 cm and �2 =
4.01 cm.  Using these values, we have plotted the complete lens on the bottom in Figure 5.2.

It is interesting to compare the two resulting lenses.  In fact, they are quite similar in
shape, except that when air is used at the output, the lens is fatter in the center.

Note that we have chosen the values of ε2 and ∆θ1 somewhat arbitrarily.  In the case of
the oil-lens-air design, one can use a considerably lower lens dielectric constant, which reduces
reflections.  An example of a better lens design is shown in Figure 5.3.  We use here a lens
dielectric constant of 6.6 and air (or SF6) at the output.  For this design, ∆θ1 = 43o, a = 10.80 cm,
b = 8.82 cm and d = 6.24 cm.  Furthermore, we find �1/�2 = 141.5, and the minimum value of Ψ2
is 15.77 cm.  Again, we choose Ψ2 = 17 cm, for which Ψ2/Ψ1 = 2.0.  Finally, we have
Ψ2/�1 = 0.9259, so �1 = 17.44 cm and �2 = 0.123 cm.

The improved design has a number of advantages over the first two designs, besides
reduced reflections.  The lens is thin at its center, so we can easily build a center conductor that
splits into two feed arms just after the lens.  If the lens is too thick, the split is too far to the right
of z = 0, thus destroying the conical symmetry.  Another advantage is that no oil cap is required,
thus reducing feed blockage.  A possible disadvantage is that there is less dielectric strength at
the output without an oil cap.  But if the duration of the pulse is short enough, there will be
insufficient time for the pulse to cross the large gap (~15 cm) from the center conductor to the
ground plane.
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Figure 5.2.  Lens design for the oil-lens-oil case (top) and the oil-lens-air case (bottom), with
∆θ1 = 50o, and Ψ2/Ψ1 = 2.
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Figure 5.3.  Improved oil-lens-air design using ∆θ1 = 43o, and Ψ2/Ψ1 = 2.

VI.  Concluding Remarks

We have provided here the design equations and some sample designs for the feed-point
lens needed to build a high-voltage half IRA.  Although we have demonstrated solutions to the
equations, we have not yet attempted to optimize the lens to achieve a maximum transmission
coefficient.  That is, we have chosen the dielectric constants and ∆θ1 somewhat arbitrarily.  In a
later paper we hope to solve the optimization problem.
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