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Abstract

In this note we continue the measurement and analysis of the complex dielectric constant
of water that was begun in Measurement Note 49.  Furthermore, we provide measurements and
analysis of dry sand, moist sand,  and concrete.  We also fit Debye and Lorentz models to the
measured dielectric constant curve using a least mean square algorithm.  Finally, we calculate
how impulses with various pulse widths would propagate through these media.
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I.  Introduction

This note is a continuation of [1], in which we described a procedure for measuring the
dielectric properties of materials using coaxial test fixture.  In that work, we also measured the
dielectric properties of water, as a calibration standard.  The reader is referred to [1] for a
description of the apparatus and for the details of the measurement procedures.

In this note we extend the work of [1] in a number of ways   First, we develop a method
of fitting a model to measured dielectric constant data, in order to describe it compactly.  This
model can be either a Debye or Lorentz model, and it may or may not include a dc conductivity
term.  A Debye model is calculated for the previously measured data on distilled water.  This
model can serve as a compact description of the dielectric properties of the measured materials
over the measured range of frequencies.

Next, we measure the dielectric properties of dry sand, moist sand (1.58% and 3.23%
water by weight), and concrete.  We fit models to each of these materials, and we verify the
models by demonstrating their ability to predict waveshapes in cases different than those that
were used to generate the model.

Finally, we predict how a simple Gaussian impulse with a variety of pulsewidths would
propagate through these materials, out to a variety of distances.  We also compile data on peak
magnitude, Full Width Half Max (FWHM), and energy of the transmitted pulses, as an aid to
system design.

Let us begin now by deriving a technique for modeling a dielectric medium in a general
fashion, which includes conductivity.



4

II.  General Model for Dielectric Constants

In [1], we introduced a Debye Model for distilled water, and we showed that our data
followed reasonably well the Debye model described in [2].  However, there is some concern that
for some materials a simple Debye model cannot adequately describe a medium that has a low-
frequency conductivity.  We will see later that this is an important capability to have, so we
provide here an extension to the Debye model that includes conductivity.

First, as a review, the Debye model is of the form
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where ε∞ is the relative dielectric constant at high frequencies, εs is the relative dielectric
constant at low frequencies, and to is the relaxation time.  For water, one set of parameters that
has previously been used [2] is ε∞ = 1.8, εs = 81, and to = 9.4 ps.

In order to develop an extension to the Debye model, it is helpful to identify an equivalent
circuit model for the Debye model of materials.  We proceed in a heuristic manner, without
rigorous proof.  To do so, we express Maxwell’s curl equation for H as
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where for unit area the total current, Jtot, can be expressed as a sum of the conduction current, Jc,
and the displacement current, Jd.  Thus, we have
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With the Debye model, Jc = 0, and using (2.1), the displacement current is
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Consider now the circuit model shown in Figure 2.1.  The current that flows into the port on the
left is
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By comparing the above two equations, we can identify a direct correlation between the Debye
model and the circuit model, as shown in Table 2.1.
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Figure 2.1.  Circuit model of the Debye Model.

Table 2.1.  Correspondence of the Debye Model to the Circuit Model.

Debye Model Circuit Model

Jtot I

E V
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It now becomes clear how to extend the Debye model to include a conductivity.  If we
include the conducting current, Jc in equation 2.4, we now have
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This corresponds to the equivalent circuit of Figure 2.2, which is described by
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Thus, we can add to our correspondence list in Table 2.1 that σ corresponds to 1/R∞.
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Figure 2.2.  Circuit model of the Debye Model, with conductivity included.  .

The above model is of great interest, because it provides a method of extracting a general
relative dielectric constant, εr, which includes the conductivity, σ.  Thus, instead of attempting to
extract the three Debye parameters from our data, we extract four, including the conductivity.
The new model for the dielectric constant is
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The extra model parameter, σ, adds little complexity to the Least Mean Square (LMS) fit to the
data.  In the next section, we fit a three-parameter model to the distilled water data, and in later
sections we fit a four-parameter model to the data for other materials.

The circuit model we have used is directly analogous to one used in [3].  In that paper, the
authors showed how to use a large number of poles, or RC pairs, in the equivalent circuit.  One
can use additional poles in a model if experimental data is found which cannot be fitted with a
single pole.
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III.  Water:  Fit to Dielectric Constant Model, and Model Validation

We use here a Least Mean Squares (LMS) method to fit a Debye model to the dielectric
constant of distilled water, as measured previously in [1].  The parameters we found are shown in
Table 3.1, and they are compared to the model published by Kunz and Luebbers [2] (the K&L
model).  The model was fit to the measured dielectric constant date between 0.5 and 3.0 GHz.
There is generally a good correlation between the three models, although there is some difference
in ε∞.

To implement the LMS fit, we used a routine in MatLab called “fmins.”  The technique
requires an initial guess, and follows the guess to a local minimum.  A bit of trial and error is
necessary in order to obtain the best fit, because the routine can only return a local minimum, not
a global minimum.  The optimum is chosen to minimize the squared magnitude of the difference
between the model and the measured data.

Plots of the measured dielectric constant (from [1]), the K&L Model, and the calculated
model fit are all shown in Figure 3.1.  Furthermore, the attenuations for the three cases are shown
in Figure 3.2.  The calculated Debye model is a slightly better fit to the experimental data than
the K&L Debye model, and this is probably to be expected.  Note that ε∞ has little effect on the
dielectric constant in the frequency range of interest.

Table 3.1.  Comparison of Measured Debye Parameters to the K&L Model[3].

Parameter Calculated Debye Fit K&L Debye Model[3]

εs 81.8358 81

ε∞ 23.4606 1.8

to 9.4 ps 11.5 ps

Next, we verify the measured Debye model by using it to predict the transmitted voltage
for the penetration of water through various lengths of water columns, with various pulse shapes.
In each case, the predictions used the measured transmitted waveform through an air-filled line
as the incident pulse.  This was then modified to include the Fresnel losses at both interfaces and
the propagation terms through the water dielectric.  It was not necessary to account for multiple
reflections, because they were time-gated out of the experimental data.  The pulse shapes
included a broad impulse, a doublet, a step, and a narrow impulse.  Tables 3.2.-3.4 summarize
the raw data that was taken for the three waveforms.  The waveform parameters recorded in these
tables were measured using the built-in functions of the Tektronix 11801 scope, with the IEEE
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options selected.  The measurement setup was the same as that used in [1], with additional
impulse forming networks and risetime limiters to shape the pulse.

Results for these predictions are shown in Figures 3.3-3.4 for the broad impulse, Figures
3.5-3.6 for the doublet, Figures 3.7-3.8 for the step function, and Figures 3.9-3.10 for the narrow
impulse.  Overlaid on the raw data are the predictions using both the calculated Debye model and
the K&L Debye model.  Both models are seen to provide very good agreement to the measured
data.  Note that the absolute time delay has been removed from the plotted data, but it can be
reconstructed from the Scope Delays in the tables.

Because our predictions match so well with the measured data, we have demonstrated the
ability to predict the transmitted waveform through a layer of water for a variety of pulse shapes
and material thicknesses.

Table 3.2.  Propagation Through Water, Broad Impulse.

Water Length
(cm)

Scope Delay
(ns)

Pulse Width
(FWHM ps)

Amplitude
(mV)

File #

00.00 83.865 118 265.2 F6102101

4.77 84.915 272 41.6 F6102102

9.54 85.915 378 30.7 F6102103

38.18 93.215 728 15.7 F6102104

Table 3.3  Propagation Through Water, Doublet.

Water Length (cm) Scope Delay
(ns)

File #

00.00 84.115 F6102105

4.77 85.115 F6102106

9.54 85.315 F6102107

38.18 93.265 F6102108
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Table 3.4.  Propagation Through Water, Step Function.

Water Length
(cm)

Scope Delay
(ns)

Rise Time
(10-90% ps)

Amplitude
(0-100% mV)

File #

00.00 83.365 70 406 F6102109

4.77 84.465 271 148 F6102110

9.54 85.515 377 146 F6102111

38.18 92.915 766 146 F6102112
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Figure 3.3.  Broad impulse air waveform, and transmission through 4.77 cm water.
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Figure 3.5.  Doublet air waveform, and transmission through 4.77 cm water.
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Figure 3.6.  Doublet transmission through 9.52 cm and 38.18 cm water.
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Figure 3.7.  Step air waveform, and transmission through 4.77 cm water.
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Figure 3.9.  Narrow impulse air waveform, and transmission through 4.77 cm water.
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Figure 3.10.  Narrow impulse transmission through 9.52 cm and 38.18 cm water.
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IV.  Dry Sand:  Measurements and Fit to Dielectric Constant Model

We provide here a complete set of data for a sample of dry sand.  This data format is very
similar to that provided earlier in [1].  The measurement technique is the same, and the
processing is almost exactly the same, with minor exceptions as noted below.

Our sample of sand was taken from the Eglin AFB Sand Box facility.  All the sand was
heated on a flat open tray to a temperature of 107oC (225o F) for one hour, in order to dry the
sample thoroughly.  The loose dry sand was weighed on a digital scale and found to have a
density of 1.50 g/cm3.  Compressed sand would have a higher density.  The sand was introduced
into the coaxial test fixture without compaction.

First, we provide all six raw waveforms which were taken with the narrow impulse.
These are shown in Figure 4.1.  Details relating to the data appear in Table 4.1.  Examination of
the data shows that dry sand is a good medium for propagating narrow impulses.

The air waveform of the narrow impulse (FWHM = 41.3 ps) through the coaxial test
fixture is shown in Figure 4.2.  This is simply the waveform after it has passed through the coax
test fixture when no material is present.  The waveform is shown in both the time and frequency
domains, in order to show the effective bandwidth of the measurement system.  The frequency
domain plot shows an effective bandwidth in the system of around 20 GHz.

Next, we show the transmitted voltage through 35.97 cm and 59.65 cm of dry sand
(Figure 4.3).  This is the raw data upon which the calculation of the dielectric constant is based.
The ratio of these two waveforms in the frequency domain represents the impulse response for
the difference of the two lengths, or 23.86 cm.  The ratio was taken by limiting the smallest value
of the denominator to 1% of its peak in the frequency domain, and by applying a 10th-order
modified Butterworth filter at 20 GHz.  The resulting ratio is shown in Figure 4.4, and the
corresponding time domain impulse response and its integral are shown in Figure 4.5.

With the above data, we can now calculate the dielectric constant, using the techniques of
[1].  The real and imaginary parts of the dielectric constant are shown in Figure 4.6.  The
corresponding attenuation is shown in Figure 4.7.  A Debye fit was generated for this above
dielectric constant data.  This data is overlaid onto Figures 4.6 and 4.7.  The Debye fit was
implemented using a least mean squares fit to the dielectric constant model of Eqn. 2.1, using
data between 500 MHz and 15 GHz.  A table of our fitted valued for these parameters is shown
in Table 4.2.  The fit is quite good at midband, and differs somewhat from the data at higher
frequencies, near where the low-pass filter is applied.

We hypothesize now that the above three Debye parameters will be sufficient to predict
the transmitted voltage through other lengths of dry sand, and using other wave shapes.  This is
demonstrated in the section that follows.



21

Table 4.1.  Experimental Data For Transmission Through Dry Sand In Coax Line With a Narrow
Impulse

Sample Length

(cm)

FWHM

(ps)

File Number

0. 41.3 F6092401

11.90 48.5 F6092402

23.86 50.6 F6092403

35.97 55.1 F6092404

47.72 60.1 F6092405

59.65 67.6 F6092406

(NOTE:  Air Length for all data = 100.00 cm - sample length;
Scope Delay = (83.51 + 0.5 ) ns for all data.

Table 4.2.  Debye Parameters for Dry Sand

Parameter Debye Fit for Dry Sand

εs  2.5220

ε∞ 2.4725

to 21.5 ps
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Figure 4.1.  Propagation through dry sand, with thicknesses of 0, 11.9, 23.86, 35.79, 47.72, and
59.65 cm.
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Figure 4.2  Air waveform for the dry sand measurements, time domain (top) and frequency
domain (bottom)
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Figure 4.3.  Transmitted signals through 35.79 cm and 59.65 cm of dry sand.
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Figure 4.4.  The impulse response of 23.86 cm of dry sand.
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Figure 4.7.  Attenuation constant of dry sand, measured and Debye fit.
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V.  Dry Sand:  Model Validation

Now that we have determined the dielectric constant of dry sand, we validate the model
by predicting the transmitted voltage for other waveshapes and other sand column lengths.  These
predictions are then compared to the raw measured time domain waveforms.  Various pulse
shapes were produced by using waveshaping modules to tailor the output from the PSPL 4015C
pulser.  Table 5.1 summarizes the raw data on propagation of various pulse shapes through dry
sand.

In order to predict the voltage transmitted through the sand, we need only the air
waveform and the Debye parameters from the previous section.  First, we generate the relative
dielectric constant, εr(ω) as a function of frequency from equation (2.1).  Next, we calculate the
transmission coefficients at the front and back interfaces, as
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Next, we calculate the propagation factor through the sand as

T e j ko r( ) ( ( ) )
ï

É ï

Z

J J1 (5.2)

where ko is the free-space propagation constant, and  is the sample length.  Note that the above
propagation factor is actually the difference between the propagation through the sample and the
propagation term through free space.  In other words, there is an additional time correction
required to compensate for the reduced air path length, which is displaced as material is added to
the coax line.  We can therefore calculate the transmitted voltage as

V T Vtrans air( ) ( ) ( ) ( ) ( )ï í ï í ï ï ïZ 1 2 (5.3)

We then convert the transmitted voltage to the time domain, and we have our result. Note that in
the above formulation we have ignored multiple reflections, which are time-gated out of our
measurements.

Let us first consider the propagation of a broad impulse (122.2 ps FWHM) through the
air-filled coax, as shown in Figure 5.1.  Note that this is a different waveshape than that used in
the previous section to calculate the dielectric constant.  The waveshape used here is a broader
impulse.  We predict the transmitted voltage through 23.86 cm and 59.65 cm of dry sand using
our Debye parameters from the last section, the air waveform, and equation (5.3).  The results are
shown in Figure 5.2, and are overlaid with raw data taken for the same case.  We find excellent
agreement between our predictions and the measurement.

Finally, we repeat the process for a doublet waveform, with sand columns of the same
length as above.  The air waveform for the doublet is shown in Figure 5.3, and the predictions
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and measurements for the voltages transmitted through the samples are shown in Figure 5.4.
Once again, there is excellent agreement between our predictions and the measurements.

Table 5.1.  EXPERIMENTAL DATA FOR TRANSMISSION THROUGH DRY SAND IN
COAX LINE USING VARIOUS PULSE SHAPES

(NOTE:  Air Length for all data = 100.00 cm - sample length;
Scope Delay = 82.82 ns for all data)

DOUBLET

       Sample Length        Amplitude     File #
 (cm)                Pk-Pk(mV)

                                                                                                                                               

00.00      101 F6110801

23.86        89 F6110802

59.65        82 F6110803

IMPULSE

       Sample Length             Pulsewidth              Amplitude      File #
  (cm)                      (FWHM ps)   (mV)

                                                                                                                                               

00.00 122.2 291 F6110804

23.86 125.9 266 F6110805

59.65 125.8 256 F6110806
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Figure 5.1.  Air waveform for the broad impulse.
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Figure 5.2.  Propagation through 23.86 cm and 59.65 cm of dry sand, raw data and prediction
with Debye model.
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Figure 5.3.  Air waveform for the doublet waveshape.
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Figure 5.4.  Propagation through 23.86 cm and 59.65 cm of dry sand, raw data and prediction
with Debye model.
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VI.  Dry Sand:  Propagation Waveshapes and Data Compilation

Having determined the Debye model for dry sand, we now show how this material
propagates a Gaussian pulse of various widths out to a variety of distances.  In doing so, we
attempt to provide some insight for system studies.  We consider Gaussian pulses with FWHM of
30, 100, and 300 ps, and propagation distances of 0.1, 1, and 10 meters.

A diagram of the input Gaussian pulses is shown in Figure 6.1.  The transmitted pulses
are calculated by convolving the input Gaussian pulses with the model transfer function for the
three distances.  Examples of the transmitted pulses are shown in Figures 6.2 through 6.4.  The
time delays of the waveforms have been adjusted arbitrarily to enhance clarity.  From these
graphs, we can clearly see the attenuation and pulse spreading of the pulses as they propagate.

Next, we compile the data in Figures 6.2-6.4, by plotting various characteristics on log-
log scales.  This will prove to be a useful representation of impulse propagation for use in system
studies.  First, we plot the peak magnitude for the three waveforms, at various distances (Figure
6.5).  Next, we plot the FWHM of the waveforms, normalized to the FWHM of the input
Gaussian (Figure 6.6).  Finally, we plot the energy density of the waveforms (Figure 6.7), and the
energy density normalized to the energy density of the input waveform (Figure 6.8).  The energy
density of a waveform is calculated as

Energy Density Z

√

z E t H t dt( ) ( )
0

(6.1)

where H(t) is calculated from E(t) using the Debye model dielectric constant.

As we expect, the magnitude decreases and the FWHM increases with propagation
distance.  It is a bit unexpected, however, that the 30 ps pulse loses only a factor of ten in energy,
after propagating ten meters.  This may well be a tolerable loss in an actual system.
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Figure 6.1.  The input Gaussians for this study, FWHM = 30, 100, and 300 ps.
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Figure 6.2.  The propagated field of the 30 ps pulse at 0, 0.1, 1, and 10 meters.  (Starting times
shifted for clarity.)
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Figure 6.3.  The propagated field of the 100 ps pulse at 0, 0.1, 1, and 10 meters.  (Starting times
shifted for clarity.)
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Figure 6.4.  The propagated field of the 300 ps pulse at 0, 0.1, 1, and 10 meters.  (Starting times
shifted for clarity.)
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Figure 6.5.  Peak waveform magnitude as a function of FWHM and propagation distance.
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Figure 6.7.  Energy density as a function of input FWHM and propagation distance.
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Figure 6.8.  Normalized Energy density as a function of input FWHM and propagation distance.
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VII.  Concrete:  Measurements

We consider now the measurement of the dielectric constant of concrete, using same
technique as in [1].

Careful sample preparation of the concrete was essential, since attenuation values vary
with the age and water content of the concrete sample.  Seven uniform annular concrete samples
were cast by pouring wet concrete mixture into a flexible silicone mold.  The annular samples
were inserted into the coaxial transmission line apparatus for the propagation measurements.

A three-step process was employed to form the samples.  First, an aluminum master
(positive) was made by computer numerical controlled machining.  The master was fabricated to
an accuracy of .00254 cm (0.001 inch).  A slight taper was included in the master to aid removal
of the mold.  Next, the silicone mold (negative) was made from the aluminum master using a
two-part RTV silicone rubber compound.  The mold was heated two hours at 65° C and then
removed from the aluminum master.  The resulting flexible silicone mold was ideal for casting
concrete or any other castable material into annular slugs for measurement in the coaxial line
apparatus.

The concrete mixture was prepared from commercial ready-mix concrete which is a 3-to-
1 mixture of sand-to-Portland cement.  The ready-mix was sifted to remove larger aggregate (pea
gravel), and mixed with water in the ratio of 28 cc water to 100 cc sifted ready-mix.  The wet
mixture was poured into the silicone mold and leveled to a 3 cm height.

The annular concrete samples were removed from the mold after 12 hours.  The samples
were cured 10 days at room temperature.  Next, the samples were baked in an oven at 200° F for
24 hours to drive off excess moisture.  Finally, the samples were cured for an additional two
days.  The curing sequence was intended to simulate the natural drying action, which would
occur over a much longer period in the ambient environment.

Seven annular concrete samples were prepared by the above procedure for use in the
experiment.  The samples were weighed with a precision digital laboratory scale which was
calibrated with a calibration mass.  The outside diameter (OD), inside diameter (ID), and length
(L) were next measured with precision dial calipers.  Each of the seven samples was uniquely
numbered.  The mean parameters for the samples were a mass of 41.72 grams, an OD of 3.475
cm, an ID of 1.594 cm, and a length of 2.896 cm.  These numbers were used to calculate a mass
density of 1.92 grams/cc for the cured concrete which was used in the propagation
measurements.

The experimental setup for the ultra-wideband impulse propagation measurements
through concrete is shown in Figure 7.1.  The setup was virtually identical to that described in [1]
for measurements of distilled water.   A 24-inch Goretex cable was used between the coax line
fixture and the sampling head in place of the 9-inch semi-flex cable which had been used for the
water measurement.



41

Wave
Expansion

Section

Second
Interface

Annular
Dielectric
Samples

sample

air

totalZ100cm

First
Interface

Output
Connector

Feed-Through
Sampling

Head
Tek SD-20

24" Goretex
Cable

Sampling
Scope Display

Tek 11801

Trigger

Computer
486 DX2

RS-232

Wave
Expansion

Section
Input

Connector
6" Goretex

Cable

Attenuator Pulse Sharpener
PSPL 4015 RPH

Step Pulse
Generator

PSPL 4015C

50 Ω
Termination

Pulse Shaping
Network

Air

Attenuator
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Three different waveforms were used.  The Picosecond Pulse Lab model 4015C step
generator was used with various pulse shaping networks to produce impulse, step, and doublet
waveforms.  These waveforms were propagated through the coaxial transmission line apparatus
to the Tektronix model 11801 sampling digitizer using type SD20 sampling head.  Precision 3.5
mm attenuators were used to reduce the signal level and to absorb multiple reflections.  For the
step waveform, a 10 dB attenuation value was used at both the input and the output to the coax
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line apparatus, while a 3 dB attenuation value was used for the impulse and doublet
measurements.

For the impulse waveform, the pulse shaping was accomplished with a single impulse
former (differentiating network) attached directly to the source output.  For the doublet
waveform, two impulse formers were used along with a 100 ps risetime standard.  For the step
waveform, no pulse shaping was employed.  Other details of this test setup are as given in [1].

Measurements were taken with three different temporal waveshapes (impulse, doublet,
and step) to compare propagation to theoretical predictions.  The material dielectric response,
determined using the impulse waveshape, was then used to predict the pulse evolution with
propagation distance for the doublet and step waveshapes.  For each waveshape, a reference
waveform (  = 0 cm) was taken with only air in the coaxial fixture.  Then, the annular concrete
slugs were added one at a time, and data waveforms were recorded for each propagation distance.
It must be noted that as material samples are inserted into the coaxial line, the length of the air
path is reduced by the sample length.  This reduction of air path must be considered in data
analysis.

Table 8.1 lists raw data and waveform file names for a narrow impulse propagating
through concrete.  The pulse width and amplitude were read directly from the digitizer using the
measurement mode.  The pulse width refers to the FWHM and amplitude to the 0% to 100%
amplitude calculation with the built-in IEEE algorithm.  The raw data shows that the pulsewidth
broadens and that the amplitude decreases as the propagation distance increases.  This effect can
be seen graphically in Figure 8.1, which shows an overlay of all eight pulses.

The pulse is shifted to a later time as the length of material is increased.  The time
increment is almost identical for each sample.  The approximate index of refraction, n = c/v, can
be calculated from this data using the formula n = (c ∆t/∆ ) + 1, where ∆t and ∆  are the
differential time and length computed from any pair of waveforms.  The times are measured to
10% of peak amplitude rather than 50% in order to minimize the effect of the finite pulse
risetime.  Comparison of any pair of waveforms gives an index of approximately 1.8.  In other
words, the wave speed in concrete is approximately half of the free space velocity. The dielectric
constant, which is the square of the index (εr = n2), is 3.2.  This is an approximate calculation
because we are calculating the group velocity for the impulse and the calculation ignores the
frequency dependent propagation speed.

The data for propagation of the doublet and step waveforms is listed in Table 9.1.  It can
be seen that the amplitude of the doublet decreases with increasing propagation distance, while
the risetime of the step waveform is degraded with propagation distance.  This is the expected
behavior for propagation through a dispersive medium.  The measured ratio of the step waveform
amplitude for a wave passing through the concrete to the step amplitude for the air path is 0.92
(ratio of 371 mV to 402 mV in Table 9.1).  The Fresnel equations (Eqn. 5.1) also predict a
transmission coefficient of 0.92 for εr = 3.2.  The agreement with the expected transmission
coefficient gives a self-consistency check to the raw data.
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VIII.  Concrete:  Data Processing and Fit to Dielectric Constant Model

We provide here a complete set of data for concrete, as described in the previous section.
This data is very similar to that provided earlier for distilled water in [1].  The measurement
technique is the same, and the processing is almost exactly the same, with minor exceptions as
noted below.

First, we provide all eight raw waveforms which were taken with the impulse, in Figure
8.1.  The raw data are summarized in Table 8.1.  Examination of the data shows that concrete is a
reasonably good  medium for propagating narrow impulses.

The air waveform of the impulse (FWHM = 41.3 ps) through the coaxial test fixture is
shown in Figure 8.2.  This is simply the waveform after it has passed through the coax test
fixture when no material is present.  The waveform is shown in both the time and frequency
domains, in order to show the effective bandwidth of the measurement system.  The frequency
domain plot shows an effective bandwidth in the system of around 20 GHz

Next, we show the transmitted voltage waveform after propagating through 11.53 cm and
20.27 cm of concrete (Figure 8.3).  This is the raw data upon which the dielectric constant
calculation is based.  The ratio of these two waveforms in the frequency domain represents the
impulse response for the difference of the two lengths, or 8.74 cm.  The ratio was taken by
limiting the smallest value of the denominator to 1% of its peak in the frequency domain, and by
applying a 10th-order modified Butterworth filter at 25 GHz.  The resulting ratio is shown in
Figure 8.4, and the corresponding time domain impulse response and its integral are shown in
Figure 8.5.

An interesting feature of the data is the overshoot in the transmitted voltage waveform
after propagating through concrete.  This is seen both in the transmitted waveform through 20.27
cm of concrete (Figure 8.3), and in the resulting impulse response (Figure 8.5).  We originally
thought this overshoot might be an error in the measurement, but after checking our setup we
found the overshoot is a real physical effect.  This overshoot is not present in our measurements
of water or dry sand.

With the above data, we can now calculate the dielectric constant, using the techniques of
[1].  The real and imaginary parts of the dielectric constant are shown in Figure 8.6.  The
corresponding attenuation is shown in Figure 8.7.  Note that although these curves were
generated from a single pair of waveforms, similar results were obtained with other waveform
pairs, so our results are self-consistent.

A Lorentz model fit was generated for the above dielectric constant data.  We had to use a
Lorentz model instead of the Debye model used previously with water and dry sand, because of
the overshoot in the impulse response.  A Lorentz model is simply a fit of the dielectric constant
to a constant plus a damped sine [2, pp. 139-144].  This is expressed in the frequency and time
domains as
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where ε∞ is the relative dielectric constant at high frequencies, εs is the relative dielectric
constant at low (static) frequencies, α is the decay constant, and β is the radian frequency.  The
Lorentz model fit was implemented using a least mean square fit to the dielectric constant data
between 1 and 15 GHz.  A plot of the resulting Lorentz model fit is shown in Figure 8.6, and the
corresponding attenuation is shown in Figure 8.7.  A table of our fitted values for these
parameters is shown in Table 8.2.  The fit to the real part of the dielectric constant is quite good
at midband.  The fit to the imaginary part of the dielectric constant is somewhat low at the low
frequencies.  In certain circumstances this can lead to an underprediction of the attenuation.

Before proceeding, let us consider the meaning of the Lorentz model.  Since it generates a
negative dielectric constant at very high frequencies, we ascribe no particular physical meaning
to the model.  It's main usefulness is as a compact description of the dielectric constant as a
function of frequency in terms of four parameters.  This model has a very interesting behavior at
very high frequencies.  However, it is not valid above 20 GHz, since that is the frequency range
of our measurements.  It would be incorrect to apply the model beyond the frequency range of
our measurements.

Finally, we consider what happens if we convolve the Lorentz model of the material with
the air waveform.  We do this as a check on whether we have successfully modeled the measured
waveforms in Figure 8.3, which were used to generated the model.  The results for propagation
through 11.53 cm and 20.27 cm of concrete are shown in Figure 8.8.  We see that there is quite
good agreement between the model predictions and the actual measurements.

We hypothesize now that the above Lorentz parameters will be sufficient to predict the
transmitted voltage through other lengths of concrete, and using other wave shapes.  This is
demonstrated in the section that follows.
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Table 8.1.  Experimental Data For Transmission Through Concrete In Coax Line With a Narrow
Impulse

       Sample Length      Pulsewidth      Amplitude   File #
    (cm)            FWHM (ps)            (mV)

                                                                                                                                               

00.00 41.3    652.8 F7010601

02.87 48.8    537.6 F7010602

05.77 53.6    508.8 F7010603

08.66 60.4    467.2 F7010604

11.53 70.8    419.2 F7010605

14.45 75.3    384.0 F7010606

17.34 82.2    358.4 F7010607

20.27 88.4    336.0 F7010608

(NOTE:  Air Length for all data = 100.00 cm – Sample Length)
Scope Delay = (84.12 + 0.2 ) ns for all data.
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Figure 8.1.  Propagation through concrete, with thicknesses of 0, 2.87, 5.77, 8.66, 11.53, 14.45,
17.34, and 20.27 cm.

Table 8.2.  Lorentz Model Parameters for Concrete

Parameter Lorentz Model Fit for Concrete

εs  3.4369

ε∞ –69.1625

α 13.94 ns–1

fres = β/(2π) 224.45 GHz
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Figure 8.2  Air waveform for the concrete measurements, time domain (top) and frequency
domain (bottom)
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Figure 8.3.  Transmitted signals through 11.53 cm and 20.27 cm of concrete.
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Figure 8.4.  The impulse response of 8.74 cm of concrete.
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Figure 8.5.  The impulse response (top) and its integral (bottom) of 8.74cm concrete.
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Figure 8.6.  Measured dielectric constant of concrete, and the Lorentz model fit, real and
imaginary parts.
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Figure 8.8.  Propagation of the impulse through 11.53 cm and 20.27 cm of concrete, raw data and
prediction with Lorentz model convolved with the air waveform.
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IX. Concrete:  Model Validation

Now that we have determined the dielectric constant of concrete, we validate our model
by predicting the transmitted voltage for other waveshapes.  These predictions are then compared
to the raw measured time domain waveforms.  Various pulse shapes were produced by using
waveshaping modules to tailor the output from the PSPL 4015C pulser, as described in Section
VII.  A table of the data provided in this section is shown in Table 9.1.  In order to predict the
voltage transmitted through the concrete, we need only the air waveform and the four Lorentz
parameters from the previous section.  The method of calculation is described in detail in Section
V of this report.

Let us first consider the propagation of a doublet through the air-filled coax, as shown in
Figure 9.1.  We predict the transmitted voltage through 11.53 cm and 20.27 cm of concrete using
our Lorentz parameters from the last section, and the air waveform.  The calculations follow the
basic method described in Section V.  The results are shown in Figure 9.2, and are overlaid with
raw data taken for the same case.  We find excellent agreement between our predictions and the
measurement.

Finally, we repeat the process for a step-function waveform, with concrete lengths of
11.53 cm and 20.27 cm.  The air waveform (  = 0 cm) for the step-function is shown in Figure
9.3, and the predictions and measurements for the voltages transmitted through the samples are
shown in Figure 9.4.  Note that in order to carry out the convolution on the step-function, we had
to first take its derivative, then implement the convolution, and finally integrate the result.  Once
again, we have found excellent agreement between our predictions and the measurements.

By now, we have justified the Lorentz model of concrete in several different ways.  We
have also shown that this model allows us to predict the evolution of arbitrary temporal
waveshapes as they propagate through concrete.  In the section that follows we consider how a
selection of canonical Gaussian pulses propagate through concrete when it is described by the
Lorentz medium.
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Table 9.1.  Experimental Data For Transmission Through Concrete In Coax Line Using Various
Pulse Shapes

DOUBLET WAVEFORM

      Sample Length        Amplitude    File #
    (cm)      Pk - Pk (mV)

                                                                                                                                               

00.00    95.3 F7010613

11.53    78.9 F7010614

20.27    71.0 F7010615

STEP WAVEFORM

       Sample Length          Risetime Amplitude      File #
     (cm)        10% - 90% (ps)   0 - 100 (mV)

                                                                                                                                               

00.00   68.2    402 F7010609

11.53   79.1    371 F7010611

20.27 101.3    371 F7010612

(NOTE:  Air Length for all data = 100.00 cm - Sample Length)
(Scope Delay = 84.12 ns for all data)

(The waveforms shown have an additional portion time-gated out of the beginning of the
waveforms.  These times are 0, 150, and 410 ps for  the lengths of 0, 11.53 and 20.27 cm,

respectively).
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Figure 9.1.  Air waveform for the doublet.
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Figure 9.2.  Propagation of the doublet through 11.53 cm and 20.27 cm of concrete, raw data and
prediction with Lorentz model.
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Figure 9.3.  Air waveform (  = 0) for the step-function waveshape.
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Figure 9.4.  Propagation of the step-function through 11.53 cm and 20.27 cm of concrete, raw
data and prediction with Lorentz model.
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X.  Concrete:  Propagation Waveshapes and Data Compilation

Having shown the validity of the Lorentz model for our range of frequencies, we now
consider how impulses with various pulse widths propagate out to various distances using this
model.  Thus, we consider FWHM pulse widths of 30, 100, and 300 ps, and propagation
distances of 0.1, 1, and 10 meters.

A diagram of the input Gaussian pulses was shown previously in Figure 6.1.  The
transmitted pulses are shown in Figures 10.1 through 10.3.  The time delays of the waveforms
have been adjusted arbitrarily to enhance clarity.  From these graphs, we can clearly see the
attenuation and pulse spreading of the waveform as they propagate.

Next, we compile the data in Figures 10.1-10.3, by plotting various waveform
characteristics on log-log scales.  This is a useful representation for system studies.  First, we plot
the peak magnitude for the three waveforms, at various distances (Figure 10.4).  Next, we plot
the FWHM of the waveforms, normalized to the FWHM of the input Gaussian (Figure 10.5).
Finally, we plot the energy density of the waveforms (Figure 10.6), and the energy density
normalized to the energy density of the input waveform (Figure 10.7).  The energy density of a
waveform is calculated as shown previously in Section VI.

As we expect, the magnitude decreases and the FWHM increases with propagation
distance.  As shown previously for sand,  the 30 ps pulse loses only a factor of ten (10 dB) in
energy, after propagating 10 meters.  This may be a tolerable loss in an actual impulse radar
system.  Note that this prediction is based on the Lorentz model of Section VIII, which may
underpredict low-frequency attenuation.
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Figure 10.1.  The propagated field of the 30 ps pulse at 0, 0.1, 1, and 10 meters.  (Starting times
shifted for clarity.)
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Figure 10.2.  The propagated field of the 100 ps pulse at 0, 0.1, 1, and 10 meters.  (Starting times
shifted for clarity.)
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Figure 10.3.  The propagated field of the 300 ps pulse at 0, 0.1, 1, and 10 meters.  (Starting times
shifted for clarity.)

300 ps
100 ps
30 ps 

10-2 10-1 100 101 102
10-2

10-1

100

101
Concrete, Peak Magnitude vs Distance, For Various Pulse Widths

Distance (m)

P
ea

k 
N

or
m

al
iz

ed
 to

 P
ea

k 
at

 z
=0

Figure 10.4.  Peak waveform magnitude as a function of FWHM and propagation distance.
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Figure 10.5.  Normalized FWHM as a function of input FWHM and propagation distance.
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XI.  Moist Sand:  Measurements

Experiments were performed to determine dielectric properties of moist sand for
propagation of ultra-wideband impulses.  The measurements were performed in the TEM mode
coaxial transmission apparatus which has been previously described in [1].  The electronics
system configuration and measurement setup was identical to that previously described for
concrete measurements in Section VII of this report.  The electronic setup was shown in Figure
7.1.  Measurements were taken for narrow impulse propagation through three different lengths of
moist sand in the coax line for two different moisture contents -- 1.58% and 3.23% distilled
water by weight.  Table 11.1 summarizes the measurement results.

The sand samples used for the experiments were from the same batch which was
previously used for the dry sand measurements, and sample preparation was similar.  This sand
was obtained from the Eglin AFB sandbox facility.  The sand was first sifted and oven dried at
300°F for 4 hours to drive off all water.  The sand samples were then weighed to an accuracy of
0.05 grams with a digital scale.  A precise (accurate to 0.05 ml) quantity of distilled water was
added to each sample using a Moore’s pipette, and the samples of sand and water were
thoroughly mixed by stirring for 30 minutes.  Two sand samples were prepared with a moisture
content of 1.58±.03% and 3.23±.03% by weight.  The dielectric properties of the distilled water
were described in [1].

A procedure for repeatably filling the coax line apparatus with sand with loose
(uncompacted) sand was developed.  It was essential that the sand sample have a planar
horizontal interface and uniform density.  The required uniformity was achieved using a specially
designed filling fixture.  The sand expanded slightly upon addition of water, giving a decrease in
density.  The measured density was 1.39±.06 g/cm2 for the 1.58% sample and 1.31±.05 g/cm2 for
the 3.23% sample.  The uncertainty in density is due to variations in sample compaction.  The
mean values quoted are the average of 4 measurements.

Measurements were taken with three different sample lengths for two different moisture
levels.  In each case the length of material in the coax line was calculated from the measured
sample weight and density.  The material dielectric response to the impulse waveshape is shown
in Figures 11.1 and 11.2.  A reference waveform (L = 0 cm) was taken with only air in the
coaxial fixture.  Then the material was added, and data waveforms were recorded for each
propagation distance.  It must be noted that as material is inserted into the coaxial line, the length
of the air path is reduced by the sample length.  This reduction of air path must be considered in
data analysis.

Table 11.1 lists raw data and waveform file names for the narrow impulse propagating
through moist sand for 1.58% and 3.23% moisture content.  The pulse width, amplitude, and
propagation delay were read directly from the digitizer using the measurement mode.  The pulse
width refers to the FWHM and the amplitude to the 0% to 100% amplitude calculation with the
built-in IEEE algorithm.  The raw data shows that the pulsewidth broadens and that the
amplitude decreases as the propagation distance increases.  This effect can be seen graphically in
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Figure 11.1 (top) which shows an overlay of the transmitted impulse for 4 propagation distances
with 1.58% moisture.  Figure 11.2 shows similar data for 3.23% moisture.

The pulse is shifted to a later time as the length of material is increased.  The time
increment is almost identical for each sample.  The approximate index of refraction, n = c/v, can
be calculated from this data using the formula

n c t
L

Z H
a

a
1 (11.1)

where ∆t and ∆L are the differential time and length computed from any pair of waveforms.  The
times are measured to 10% of peak amplitude rather than 50% in order to minimize the effect of
the finite pulse risetime.  Comparison of any pair of waveforms gives an index of approximately
1.6 for 1.58% moisture and 1.7 for 3.23% moisture.  The dielectric constant, which is the square
of the index (ε = n2), is 2.6 and 3.0 respectively for 1.58% and 3.23% moisture.  This is an
approximate calculation because we are calculating the group velocity for the impulse and the
calculation ignores the frequency dependent propagation speed.
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Table 11.1.  EXPERIMENTAL DATA FOR NARROW IMPULSE TRANSMISSION
THROUGH MOIST SAND

MOIST SAND (1.58% H2O by Weight)

Sample Length         Pulsewidth     Amplitude   Propagation     File #
       (cm)    FWHM (ps)       (mV)       Delay (ps)
                                                                                                                                               

00.0   43 672    0 F7022002

13.5   88 351 248 F7022003

27.0 109 282 508 F7022004

40.4 132 228 782 F7022005

MOIST SAND (3.23% H2O by Weight)

Sample Length         Pulsewidth     Amplitude   Propagation     File #
       (cm)    FWHM (ps)       (mV)       Delay (ps)
                                                                                                                                               

00.0   43 681    0 F7022101

14.1 128 249 278 F7022102

28.2 147 201 613 F7022103

42.2 179 159 957 F7022104

(NOTE:  Air Length for all data = 100.00 cm - Sample Length)
Scope Delay = 84.02 ns for all data.
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Figure 11.1.  Impulse propagation through moist sand (1.58%), lengths 0, 13.5, 27.0 and 40.4 cm.
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Figure 11.2.  Impulse propagation through moist sand (3.23%), lengths 0, 14.1, 28.2 and 42.2 cm.
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XII.  Moist Sand:  Data Processing and Fit to Dielectric Constant Model

We provide here a complete set of data for moist sand, with 1.58% and 3.23%
concentrations of water by weight, as described in the previous section.  This data is very similar
to that provided earlier for distilled water in [1] and for dry sand and concrete as described earlier
in this report.  The measurement technique is the same, and the processing is almost exactly the
same, with minor exceptions, as noted below.  The raw waveforms for all the data were shown in
the previous section.  Details relating to the data were shown previously in Table 11.1.

First, we process the data on moist sand with 1.53% water.  In Figure 12.1, we show the
transmitted voltage through 13.5 cm and 40.4 cm of moist sand.  This is the raw data upon which
the dielectric constant calculation is based.  The ratio of these two waveforms in the frequency
domain represents the impulse response for the difference of the two lengths, or 26.9 cm.  The
ratio was taken by limiting the smallest value of the denominator to 1% of its peak in the
frequency domain, and by applying a 5th-order modified Butterworth filter at 12 GHz.  The
resulting ratio is shown in Figure 12.2, and the corresponding time domain impulse response and
its integral are shown in Figure 12.3.

With the above data, we can now calculate the dielectric constant, using the techniques of
[1].  The real and imaginary parts of the dielectric constant are shown in Figure 12.4.  The
corresponding attenuation is shown in Figure 12.5.  Note that although these curves were
generated from a single pair of waveforms, similar results were obtained with other waveform
pairs, so our results are self-consistent.

A Debye model fit was generated for the above dielectric constant data.  Unlike earlier
model fits, we included a conductivity term in the model, as derived in Section II.  This was
necessary in order to model accurately the low-frequency behavior of the imaginary part of the
dielectric constant.  Without the conductivity term, the Debye model forces the imaginary part of
the dielectric constant to zero at zero frequency, and that is clearly not the case in this data.
Thus, the complex dielectric constant is expressed as
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(12.1)

where ε∞ is the relative dielectric constant at high frequencies, εs is the relative dielectric
constant at low (static) frequencies, to is a relaxation time, εo is the dielectric constant of free
space, and σ is the conductivity.  This Debye model with conductivity was implemented using a
least mean square fit to the dielectric constant data between 0.6 and 6 GHz.  A plot of the
resulting Debye model fit is shown in Figure 12.4, and the corresponding calculated attenuation
is shown in Figure 12.5.  A table of our fitted values for these parameters is shown in Table 12.1.
The fit to the imaginary part of the dielectric constant is quite good at low frequencies, due to the
inclusion of conductivity in the model.
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Next, we convolve the Debye model with the air waveform, to predict pulse shapes for
various propagation distances.  We do this as a check on whether we have successfully modeled
the measured waveforms in Figure 12.1, which were used to generated the model.  The results for
propagation through 13.5 cm and 40.4 cm of moist sand are shown in Figure 12.6, and are
compared to the raw data.  We see that there is quite good agreement between the model
predictions and the actual measurements.

Table 12.1.  Debye Model Parameters for Moist Sand

Debye Parameter Moist Sand, 1.58% Moist Sand, 3.23%

εs 2.6825 3.1778

ε∞ 2.1413 2.6181

to (ps) 5.5 ps 11.3

σ (mho/m) 1.3828 x 10–3 2.8577 x 10–3

Finally, we repeat the entire process for sand with 3.23% moisture.  The raw data is
shown in Figure 12.7, and the frequency domain ratio is shown in Figure 12.8.  To obtain the
ratio, a 5th order modified Butterworth filter was applied at 7 GHz.  This ratio was converted to
the time domain, as shown in Figure 12.9, and integrated, also shown in Figure 12.9.  The
resulting complex dielectric constant is shown in Figure 12.10, and the attenuation is shown in
Figure 12.11.  A Debye model with conductivity was fit to the dielectric constant data between
0.5 and 5.0 GHz, and the resulting fit is also shown in Figures 12.10 and 12.11.  The Debye
parameters are shown in Table 12.1.  Finally, we perform a check on the data by convolving the
Debye model with the air waveform, and comparing the results to the raw waveforms.  The
results are shown in Figure 12.12, where we see excellent agreement between the two waveforms
for two lengths of sample.

We may summarize the results of this section by noting that the inclusion of the
conductivity term improves the fit of the model to the measured data.  Without the conductivity
term, the imaginary part of the dielectric constant (proportional to the attenuation) is impossible
to fit at the lower frequencies.
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Figure 12.1.  Transmitted signals through 13.5 cm and 40.4 cm of moist sand, 1.58%.
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Figure 12.2.  The impulse response of 26.9 cm of moist sand, 1.58%.
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Figure 12.3.  The impulse response (top) and its integral (bottom) of 26.9 cm moist sand, 1.58%.
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Figure 12.4.  Measured dielectric constant of moist sand 1.58%, and the Debye model fit,
including conductivity, real and imaginary parts.
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Figure 12.6.  Propagation of the impulse through 13.5 cm and 40.4 cm of moist sand 1.53%, raw
data and prediction with Debye model convolved with the air waveform.
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Figure 12.7.  Transmitted signals through 14.1 cm and 42.2 cm of moist sand, 3.23%.
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XIII.  Moist Sand:  Propagation Waveshapes and Data Compilation

We now consider how impulses with various pulse widths propagate out to various
distances using the models of moist sand derived in the last section.  For moist sand with 1.58%
and 3.23% water, we consider FWHM pulse widths of 30, 100, and 300 ps, and propagation
distances of 0.1, 1, and 10 meters.

A diagram of the three input Gaussian pulses, with FWHM=30, 100, and 300 ps, was
shown previously in Figure 6.1.  The transmitted pulses are shown in Figures 13.1 through 13.3,
for both moisture contents and for three different propagation lengths.  From these graphs, we
can clearly see the attenuation and pulse spreading of the waveform as they propagate.  Note that
due to high attenuation and dispersion, the propagated field at 10 meters is not quite visible on
our scale.

Next, we compile the data in Figures 13.1-13.3, by plotting various waveform
characteristics on log-log scales.  This is a useful representation for system studies.  First, we plot
the peak magnitude for the six waveforms, at various distances (Figure 13.4).  Next, we plot the
FWHM of the waveforms, normalized to the FWHM of the input Gaussian (Figure 13.5).
Finally, we plot the energy density of the waveforms (Figure 13.6), and the energy density
normalized to the energy density of the input waveform (Figure 13.7).  The energy density of a
waveform is calculated as shown previously in Section VI.

As we expect, the magnitude decreases and the FWHM increases with propagation
distance.  The 30 ps pulse loses a factor of about one thousand (30 dB) in energy, after
propagating 10 meters in 1.58% moist sand.  The same pulse loses a factor of ten thousand, or
about 40 dB, after propagating the same distance in the 3.23% moist sand.  Note that these
predictions are for plane-wave propagation.  Since we have modeled the conductivity carefully
here, we believe this provides a reasonable estimate of the actual values.  A radar system would
have to have an overall gain of perhaps 20 dB larger than these losses, in order to be functional.
We believe that transient radar systems with gains of this order of magnitude are feasible.

These data imply that impulse radar systems, using pulses as narrow as 30 ps, can
penetrate moist sand to depths larger than ten meters.  While wider pulse widths have reduced
attenuation, this is offset by a lower antenna gain.  The necessary data are now in place to
calculate the optimal pulse width for any given propagation distance.
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Figure 13.1.  The propagated field of the 30 ps pulse at 0, 0.1, 1, and 10 meters, 1.58% top and
3.23% bottom.  Note that the 10-meter pulse on the bottom is invisible  (Starting times shifted
for clarity.)
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Figure 13.2.  The propagated field of the 100 ps pulse at 0, 0.1, 1, and 10 meters, 1.58% top and
3.23% bottom.  (Starting times shifted for clarity.)



86

0 m  
0.1 m
1 m  
10 m 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

300 ps Waveform After Propagating Through Moist Sand, 1.58%

Time (ns)

Tr
an

sm
itt

ed
 F

ie
ld

 (V
/m

)

0 m  
0.1 m
1 m  
10 m 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

300 ps Waveform After Propagating Through Moist Sand, 3.23%

Time (ns)

Tr
an

sm
itt

ed
 F

ie
ld

 (V
/m

)

Figure 13.3.  The propagated field of the 300 ps pulse at 0, 0.1, 1, and 10 meters, 1.58% top and
3.23% bottom.  (Starting times shifted for clarity.)
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Figure 13.6.  Energy density as a function of input FWHM and propagation distance, 1.58% top
and 3.23% bottom.
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Figure 13.7.  Normalized Energy density as a function of input FWHM and propagation distance,
1.58% top and 3.23% bottom.
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XIV.  Dry Sand and Concrete:  Model Refinements to Include Conductivity

We refine here the Debye and Lorentz model parameters of dry sand and concrete.  We
do so because at the time we originally analyzed the data, we had not yet implemented
conductivity into our Debye and Lorentz models.  By including conductivity, we obtain a slightly
better fit to the dielectric constant data.

First, we  consider dry sand.  The data for dry sand appears in Section IV of this report,
and a Debye model that includes conductivity appears in equation (2.6).  The new parameters for
dry sand are shown in Table 14.1.  Comparisons of the new model to the measured dielectric
constant and attenuation are in Figures 14.1 and 14.2.

Finally, we provide a new model of concrete, by adding the conductivity term to the
Lorentz model.  The concrete was analyzed in Section VIII of this report.
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This new model for the dielectric constant is just the same as the previous Lorentz model, with
the exception that we have added a conductivity term, σ / jωεo, where σ is the conductivity, and
εo is the permeability of free space.  Using this model, the new Lorentz parameters are shown in
Table 14.2.  Comparisons of the new model to the measured dielectric constant and attenuation
are shown in Figures 14.3 and 14.4.

Table 14.1.  Debye Parameters for Dry Sand, Including Conductivity

Parameter Debye Fit for Dry Sand

εs 2.5160

ε∞ 2.4725

to (ps) 17.3

σ (mho/m) 1.5526 x 10–3
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Figure 14.1.  Comparison of dry sand dielectric constant to Debye fit, with conductivity.
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Figure 14.2.  Comparison of dry sand attenuation to Debye fit, with conductivity.

Table 14.2.  Lorentz Model Parameters for Concrete, Including Conductivity

Parameter Lorentz Model Fit for Concrete

εs 3.4406

ε∞ 1.9952 x 10–5

α (ns–1) 9.8509

fres = β/(2π) (GHz) 50.6823 GHz

σ (mho/m) 7.6335 x 10–3
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Figure 14.3.  Comparison of concrete dielectric constant to Lorentz fit, with conductivity.
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Figure 14.4.  Comparison of concrete attenuation to Lorentz fit, with conductivity.
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XV.  Free-Field Measurements of Dielectric Constants

To demonstrate free-field measurements of dielectric properties, we performed a remote
measurement of the reflection from dry sand and from concrete.  Using this method, we could
extract an approximate dielectric constant of the measured material, and compare the result to
data from the coaxial test fixture.

The measurement was performed in TDR mode using a single antenna, and using the
Tektronix CSA803 digital sequential sampling oscilloscope with the SD24 TDR sampling head.
The SD24 head contains a built-in source providing a 0.25 V step waveform.  The two antennas
used were the nine-inch diameter lens IRA and the nine-inch diameter lens reflector IRA, both of
which were built for an earlier part of this contract.  The antenna was placed 35 cm from the sand
sample and 31 cm from the concrete sample.  The sand had a moisture content of less than 0.03%
by weight.  The concrete sample has dimensions of 24” x 24” x 6.5”.  For these dimensions, only
the first nanosecond after the reflected impulse is valid.

The method involves the measurement of three waveforms.  First, the TDR waveform is
taken of the dielectric sample.  Next, a metal plate is placed in front of the dielectric sample, and
a reference (or normalization) waveform is taken.  The reference waveform gives a 100%
reflection.  Finally, the antenna is pointed into the air, and a background waveform is taken.  The
background waveform contains the launched signal and reflections from the antenna and cables.
The background waveform is subtracted from both the TDR waveform and the reference
waveform to remove the source waveform and artifacts due to internal reflections.  Background
subtraction is only needed for the TDR method, and is not employed when two antennas are used
in radar mode.

First, we consider reflection from sand, using a lens IRA.  These data were acquired at the
Eglin Air Force Base sand box facility, which uses thick wooden planks (4.13 cm) to retain the
sand.  It appears that the wood has little effect on the measurement.

All three waveforms of raw data for the reflection from sand are shown in Figure 15.1.
The dc level of all the signals have  been adjusted to zero.  Next, we subtract the background
waveform from the signal and reference waveforms.  The results are shown in Figures 15.2 and
15.3, after adjusting the dc level, and after adding a cosine taper to the end of the signal.  These
waveforms show the reflected pulse from the dielectric sample and a perfect reflector.  The
reflection coefficient is determined by deconvolving the reference signal (reflection from a
conducting plate) from the signal waveform (reflection from the dielectric layer).  The
deconvolution is implemented by dividing the signal waveform by the reference waveform in the
frequency domain.  The magnitude of the reference waveform (denominator) is limited to being
no less than one percent of its maximum, in order to avoid dividing by a very small number.  The
resulting ratio then is filtered by a 5th order modified Butterworth filter at 8 GHz.  The result of
the deconvolution in the frequency domain is shown in Figure 15.4, and in the time domain in
Figure 15.5.  This time domain response is the impulse response of the medium.  When
integrated, we obtain a unitless step response, which corresponds closely to the reflection
coefficient we expect.
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The integrated impulse response (step response) for sand is shown in Figure 15.6.  From
Section IV of this report, we expect a dielectric constant of about 2.5, which corresponds to a
reflection coefficient of –0.225.  Recall that the reflection coefficient, ρ, is given by
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In our step response, we find a jump of about 0.225 at 1.2 ns.  Note that a jump of +0.225 in the
step response corresponds to a reflection coefficient of –0.225, because we normalized to
reflection from a conducting plate, with a reflection coefficient of –1.  Thus, our free field
measurements of sand are consistent with our coaxial test fixture measurements.

Next, we repeat the measurement of sand using a nine-inch diameter reflector IRA.  The
raw data is shown in Figure 15.7.  Note that the ends of the waveform have saturated the sampler,
so these are time-gated out of the signal processing.  We proceed with the same calculation as
above, using a 5th-order modified Butterworth filter at 10 GHz, and arrive at the step response
shown in Figure 15.8.  Once again, we see a jump of about 0.225 in the step response at the
interface, which is the predicted reflection for a step waveform from dry sand, with dielectric
constant 2.5.  We note that the measurements with two different types of antennas give the same
result for the reflection coefficient.  The raw data for the two antennas appear quite different, but
after processing we see agreement on the value of ρ.

Finally, we measure the dielectric constant of a concrete sample, using the lens IRA.  The
three raw data waveforms are shown in Figure 15.9, and the signal and reference waveforms are
shown in Figures 15.10 and 15.11.  The frequency domain impulse response is calculated as
before, using a 10th-order modified Butterworth filter at 8 GHz.  The resulting frequency domain
impulse response is shown in Figure 15.12, and the corresponding time domain impulse response
is shown in Figure 15.13.

The integrated impulse response (step response) for concrete is shown in Figure 15.14.
There is a sudden jump of approximately 0.5 in the step response, which is due to the interface.
We calculate a reflection coefficient of 0.3 using a dielectric constant of 3.5, which was
measured in the coaxial test fixture, as described in Section 8 of this report.  The source of the
difference in ρ is unclear, but the two concrete samples were not prepared in the same manner.  It
is possible that a concrete sample that has been sitting in the moist air near Eglin AFB could have
a higher moisture content and dielectric constant than the smaller samples used in the coaxial test
fixture, which had been baked in an oven.  Also, there is no rigid formula for concrete, so it is
possible that different samples could be composed of different materials.  While we carefully
controlled the content of the material in our coaxial test fixture, this was not possible with the
concrete slab we measured in the free-space measurement.

In the previous discussion, we compared reflection coefficients of the step waveform
measured in free space, to predictions based on the dielectric constant measured in a coaxial test



98

set.  We could, however, just as easily compare dielectric constants.  To do this, we simply invert
equation (15.1), giving
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Thus, we can measure εr at a distance using antennas.  Using this method, we find values of εr =
2.5 for sand and 9 for concrete.  This compares to measured values in the coaxial test fixture of
2.5 for sand and 3.5 for concrete.  Since it was impossible to control the material content of the
concrete slab, it is probably not fair to compare the free-field concrete data to the data taken in
the coaxial test fixture.

Based on this data, we conclude that we can successfully find the dielectric constant of
materials using reflections off an interface.  In the case of sand, the extracted dielectric constants
using the free-field method correspond nicely to those measured in our coaxial test fixture.  In the
case of concrete, we could successfully measure the dielectric constant, but we arrived at a
different value than that obtained with the coaxial test fixture.  This could be explained by
different makeup and moisture content of the two concrete samples.

The TDR measurements with antennas demonstrated remote measurement of dielectric
constant, but was not an ideal method.  A true radar measurement, using separate transmitter and
receiver, would be vastly superior, since the signal processing would not have to separate the
transmit and receive data, and the transmit power would be many orders of magnitude higher.
The TDR pulse power was 1.25 mW (0.25 V into 50 Ω), while the power for our radar
transmitter is 125 kW (2.5 kV into 50 Ω).  One would expect improved accuracy at higher power
levels.  Future experiments will address more accurate measurements using the high-power
impulse radar technique.
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Figure 15.1.  Raw data for reflection from sand with a Lens IRA.
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Figure 15.2.  Signal waveform after background subtraction.
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Figure 15.3.  Reference waveform after background subtraction.
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Figure 15.4.  Frequency domain impulse response for sand reflection.



101

0 0.5 1 1.5
-2

-1

0

1

2

3

4

5

Time (ns)

Im
pu

ls
e 

R
es

po
ns

e,
 (1

/n
s)

Test 1: Reflection from Sand, Lens IRA: Impulse Response

Figure 15.5.  Impulse response for sand reflection.
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Figure 15.6.  Step response for sand reflection, measured with a lens IRA.
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Figure 15.7.  Raw data for reflection from sand with a reflector IRA.
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Figure 15.8.  Step response for sand reflection, measured with a reflector IRA.



103

Signal    
Reference 
Background

0 1 2 3 4 5 6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
Test 3: Reflection from Concrete, Lens IRA: Raw Waveforms

Time (ns)

V
ol

ta
ge

 (V
)

Figure 15.9.  Raw data for reflection from concrete.
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Figure 15.10.  Signal waveform after background subtraction.
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Figure 15.11.  Reference waveform after background subtraction.
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Figure 15.12.  Frequency domain impulse response for concrete reflection.
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Figure 15.13.  Impulse response for concrete reflection.
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Figure 15.14.  Step response for concrete reflection.
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XVI.  Conclusions

We have successfully measured the dielectric constant of a variety of materials using a
coaxial test fixture.  We have fit a model to this dielectric constant, and we have shown that the
models have good predictive capability.  The models have been used to model propagation
through all of the materials that were studied.  In each case, the agreement was excellent.

Calculations were made for longer-range propagation.  These calculations imply that
useful energy can penetrate the materials studied even for pulses as narrow as 30 ps out to a 10-
meter distance.

We have also demonstrated a free-field method of measuring dielectric constants using a
TDR technique.  In the one case where we could control the material content (dry sand), we
found good agreement with the coaxial test fixture measurements.
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Appendix A: Correlation Between Frequency Domain and Time Domain Figures of Merit
for UWB Antennas

We consider here how to convert our measured antenna parameter, h(t), to something
close to the IEEE definition of frequency domain gain.  This may or may not be a good idea, as
described below, but it is often requested of us.  We consider how to implement this as well as
can be done.

We begin with the standard expressions in the frequency domain.  Thus, the received
power is

P A Srec eff incZ (A.1)

where S is the incident power density in Watts/m2 and Aeff is the effective aperture.  Gain is
related to effective aperture by

A Geff Z

ä
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4
(A.2)

Combining the above two equations, we have

P G Srec incZ
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é
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4
(A.3)

Take the square root, and recast into voltages

V
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G E
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(A.4)

where Zo is the impedance of free space.  Thus, the final result in the frequency domain is

V
G f

Erec
g

incZ

ä

é2
(A.5)

where fg = Zfeed/Zo.

Let us now compare the above equation to one that we have been using in the time
domain, i.e.,

V t h t E trec inc( ) ( ) ( )Z (A.6)
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where the " ° " symbol indicates convolution.  We routinely have already measured h(t), so we
just have to rescale to get gain.  Converting this to the frequency domain, we have

V h Erec inc( ) ( ) ( )ï ï ïZ (A.7)

Now compare equations (5) and (7), to get
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2 2

2

2
(A.8)

We can use this to scale our h(t)waveforms to get a frequency domain gain.  Note the similarity
between equations (A.2) and (A.8).  The implication is that the effective aperture as a function of
frequency is h2(ω)/fg , which is a rather simple and pleasing result.

There is a drawback with this definition, in that it does not take into account dispersion,
or time delay.  If different frequencies have different time delays (as happens on more
conventional antennas), the received pulse will not be clean.  But the above definition of gain
does not take this into account.  Thus, using this definition of gain, two antennas with the same
gain can have a very different peak radiated E-fields.

Using this theory, we can calculate the gain of the nine-inch diameter reflector and lens
IRAs, which were originally measured in [4].  The gain of the nine-inch diameter reflector IRA is
shown in Figure A.1, and the gain of the nine-inch diameter lens IRA is shown in Figure A.2.
When comparing the two gains, the most striking difference is apparent at the low frequencies,
between 1 and 3 GHz.  The dip in h(t) in this region becomes quite apparent when it is multiplied
by frequency squared.  We presume this dip occurs because the feed arms are not terminated in
the reflector design.  Future designs will include terminations of the feed arms.  Even without the
dip, there is a three dB advantage for the lens design.
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Figure A.1.  Gain of the nine-inch reflector IRA.
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Appendix B:  The Lens Effect of a Dielectric Slab

We wish to calculate here the effect of interposing a dielectric wall or slab between two
antennas.  Consider the configuration shown in Figure B.1, with a transmitter and receiver on
either side of a dielectric slab.  As a rough approximation, we can calculate the transmitted field,
relative to that for free space, based on two effects.  First there are Fresnel losses, which are due
to reflections from either side of the dielectric slab.  Second, there is a focusing effect, because
the transmitter appears to move closer to the slab.  This focusing effect tends to enhance the field
on target, because the source appears to be closer to the wall.  We can express this as

E ETrans Free SpaceZ “ “(Fresnel losses) (Distance Ratio) (B.1)

In other words, there are two effects at work—reflections from the front and back walls, and a
field enhancement due to the virtual focus moving closer to the wall (the Distance Ratio).

   

t � 2� 1

� tot

∆�

Transmitter

Virtual
Source

Receiver

Figure B.1.  Two antennas on either side of a dielectric slab, with the virtual source.

The Fresnel losses are trivial to calculate as

Fresnel losses Z

H

4

1
2

É

É

r

rc h
(B.2)

This assumes the dielectric constant has no frequency dependence, so this is just an
approximation.  The distance ratio is just
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Distance Ratio Z
J

tot

tot a
(B.3)

where tot is the total distance from transmitter to receiver, and ∆  is the amount by which the
focal length is shortened due to the slab.  This gain is associated with the virtual focus of the
transmitted rays moving closer to the receiver.  Finally, the shift in virtual focus is

a Z
J

t r

r

É

É

1
(B.4)

where t is the wall thickness.  We now derive this value of ∆ .

To determine ∆ , consider the geometry shown in Figure 2.  This shows how a ray
penetrates a dielectric slab, when it is incident at a small angle off normal θ1.  We have invoked
small-angle approximations, so the sines and tangents of all the angles are just the angles
themselves.
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Figure B.2.  Layout for determining ∆ .
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From simple geometry, we have
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(B.4)

Snell's law is now invoked as
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So if we substitute è è É2 1Z r  into equation (B.4), we have
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This is the final solution for ∆ .  We can now combine the effects into a single equation,
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This is our final result.

Let us consider now an example, with 1 = 2 = t = .33 m, , and εr = 3.5  These
parameters are typical of some of our measurements of concrete.  Using these parameters, we get
Fresnel losses = 0.91, ∆  = 0.155 m, Distance ratio = 1.18, for a total correction factor of 1.08.
The result is that there has been a net gain due to the focusing effect!  One might instead expect
the concrete wall to reduce the field!

The above calculations are really only valid to the extent that the source appears as a
single point source.  In practice, the antenna is a focused aperture.  Thus, the analysis is strictly
valid only at distances further away than those we have calculated.  In addition, real concrete has
losses and dispersion, which were not included in the model.  These effects may in fact prove to
be more important than the effects we have calculated here.
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