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ABSTRACT

In this continuation of our paper in the last conference proceedings1, we consider further
developments in the area of Impulse Radiating Antennas (IRAs).  First, we consider definitions of gain in the
time domain, which are important for optimizing the performance of IRAs.  A reasonable definition of gain
must be equally valid in transmission as in reception.  Such a definition leads naturally to a transient radar
equation, which we discuss.  Next, we consider how to optimize the feed impedance in a reflector IRA.  If we
use our simple model of IRA performance, the gain of an IRA is always better at lower impedances.  But this
implies larger feeds with more aperture blockage.  To resolve this, we refine our simple model to account for
feed blockage.  We also consider the radiation pattern of IRAs, and we provide simple calculations.  Finally,
we provide a sample experiment which confirms our theory of IRA operation.

I.  REVIEW OF IRA DESIGN

By now there exists a considerable body of literature concerning the design of IRA’s1-17.  There are
two fundamental types of IRA, the reflector IRA and the lens IRA (Figure 1.1).  The reflector IRA consists of
a paraboloidal reflector fed by a conical TEM feed and terminated in an impedance that maintains a cardioid
pattern at low frequencies.  The lens IRA consists of a simple TEM horn with a lens in the aperture for
focusing25,26.  Either design is fed by a voltage source that is ideally shaped like a step function, but is in
practice shaped like a fast-risetime impulse with a slower decay. In addition, either design normally has a
dielectric lens at the apex to maintain voltage standoff26,27.  Although there is some feed blockage associated
with the reflector design, there is a considerable penalty in weight associated with the lens design.  Thus, until
lightweight dielectrics (real or artificial) with appropriate loss and dispersion properties are found, lens IRAs
will likely be confined to applications with small apertures.

The step response of a reflector IRA on boresight consists, to first order, of a prepulse followed by
an impulse.  The magnitude of the prepulse is determined by transmission line techniques1,8, and it lasts for
the round-trip transit time of the feed, 2F/c, where F is the focal length of the reflector, and c is the speed of
light.  The magnitude of the impulse is found by aperture integration1,5.  The total response is
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where D is the diameter of the reflector, fg = Zfeed / Zo, Zo is the impedance of free space, Vo is the
magnitude of the driving voltage step launched onto the feed, r is the distance away from the antenna on
boresight, and u(t) is the Heaviside step function.  Furthermore, δa(t) is the approximate Dirac delta
function3, which approaches a true Dirac delta function as r approaches infinity.  This is a high-impedance
approximation based on the aperture integration described by Baum5.  Later, we provide a correction for
lower impedances.  Note that the above equation can be expressed in terms of an arbitrary driving voltage as
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where V(t) is the voltage launched onto the feed.
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Figure 1.1.  A reflector IRA (left) and a lens IRA (right).

II.  GAIN DEFINITION IN THE TIME DOMAIN

If we are to optimize the feed impedance of the IRA, it will be necessary to provide a good
definition of that quantity which is to be optimized.  The definition of gain in the frequency domain is already
well established as an IEEE standard18.  However, no analogous definition has been developed in the time
domain.  There have been a number of attempts to clarify this point, however, none have provided a
definition that is consistent with reciprocity.  That is, none of the definitions are as meaningful in reception as
in transmission.  We propose here a definition that meets this criterion.

Since the exact definition of gain is so critical, it is useful to consider its definition in the frequency
domain.  According to the IEEE standard the definition is as follows:

gain; absolute gain (of an antenna in a given direction).  The ratio of the radiation intensity, in a
given direction, to the radiation intensity that would be obtained if the power accepted by the antenna
were radiated isotropically.
NOTES:  (1) Gain does not include losses arising from impedance and polarization mismatches.  (2) The
radiation intensity corresponding to the isotropically radiated power is equal to the power accepted by the
antenna divided by 4π.  (3) If an antenna is without dissipative loss, then in any given direction, its gain is equal
to its directivity.  (4) If the direction is not specified, the direction of maximum radiation intensity is implied.
(5) The term absolute gain is used in those instances where added emphasis is required to distinguish gain from
relative gain; for example, absolute gain measurements.

directivity, partial (of an antenna for a given polarization).  In a given direction, that part of the
radiation intensity corresponding to a given polarization divided by the total radiation intensity
averaged over all directions.
NOTE:  The (total) directivity of an antenna, in a specified direction, is the sum of the partial directivities for
any two orthogonal polarizations.

radiation pattern; antenna pattern.  The spatial distribution of a quantity which characterizes the
electromagnetic field generated by an antenna.
NOTES:  (1) The distribution can be expressed as a mathematical function or as a graphical representation.
(2) The quantities which are most often used to characterize the radiation from an antenna are proportional to,
or equal to, power flux density, radiation intensity, directivity, phase, polarization, and field strength.  (3) The
spatial distribution over any surface or path is also an antenna pattern.  (4) When the amplitude or relative
amplitude of a specified component of the electric field vector is plotted graphically, it is called an amplitude
pattern, field pattern, or voltage pattern.  When the square of the amplitude or relative amplitude is plotted, it
is called a power pattern.  (5) When the quantity is not specified, an amplitude or power pattern is assumed.

Let us point out some features of these definitions.  First, we note that gain is independent of source
mismatch.  In fact, antenna gain is independent of all source parameters with the exception of frequency.  In
the time domain, we might consider replacing a dependence upon frequency with a dependence upon
risetime, peak derivative, or Full Width Half Max (FWHM) of the driving function.  Second, we note that the
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definitions of gain and directivity assume one is looking at the total radiation in a given direction.  If one were
considering the effects of polarization, one would use a partial gain, or partial directivity.  Next, we note that
gain is normalized to the “power accepted by the antenna,” while directivity is normalized to the “total power
radiated by the antenna.”  Antenna gain takes into account antenna losses, while directivity does not.

It is interesting to note here that all the terms here are defined solely for transmit mode--there is no
mention of the antenna being used as a receiver.  This is all that is needed because there is a simple
relationship between an antenna’s transmitting and receiving properties in the frequency domain.  To convert
a transmit pattern to a receive pattern, one merely multiplies by 1/jω, which is a constant in the frequency
domain where s = jω.  However, this corresponds to an integral in the time domain, so in the time domain the
conversion is not as simple.

Let us associate some equations with the above definitions.  According to Stutzman and Thiele19
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where U ( , , )θ φ ω  is the radiation intensity in Watts/steradian, and Pin(ω) is the power accepted by the
antenna.  Furthermore, antenna pattern is
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where U ( , , )max maxθ φ ω  is the radiation intensity in the direction of maximum radiation (boresight).
In order to extend the definition of gain into the time domain, we must express the radiated and

received fields in terms of the incident voltage (in transmission) and the incident field (in reception).  The
diagrams showing the relevant quantities are shown in Figure 2.1.  Note that there is a resistive load that is
matched to the characteristic impedance of any feed transmission line attached to the antenna port.  (This will
also be matched to the IRA feed, which is itself a conical transmission line.)  This is analogous to the use of
scattering parameters in circuit theory.
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Figure 2.1.  A transient antenna in transmit mode (top) and receive mode (bottom).

First we describe the relevant equations in the frequency domain.  Because of the resistive
termination matched to the feed line, in transmission Vt(t)=Vs(t)/2.  Instead of referring to port voltages, we
will refer to voltage waves, in the spirit of S-parameters in microwave theory.  Thus, the transmitted and
radiated fields are, according to Baum7
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 is the direction of radiation and γ =s/c..  The time domain analogs of these equations are
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where the ° operator indicates a convolution and the dot product convolution operator �⋅  implies a sum of the
convolution of each component of the vectors.  Note that the units of h t
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 is the step response in transmission, which has been characterized for reflector

IRA’s (earlier in this paper) and for TEM horns by Farr and Baum9.  Finally, note that h tt i
→ →

( , )1  is just the step
response in transmission times some constants.

We can now drive the antenna with a standard waveshape, such as the integral of a Gaussian (in
transmission) or a Gaussian (in reception).  Because of the above reciprocity relationship in the time domain
we can establish a correlation between the transmit and receive cases.  We now propose a gain defined in
terms of norms as
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where 1e
→

 is one of two orthogonal polarizations.  The above two definitions are guaranteed to be equal if the
driving voltage waveshape in transmission is the integral of the incident electric field in reception.  One can
think of the norm of a function as one of several commonly used characteristics of a time domain function,
such as the peak of the function (∞-norm), the integral of magnitude of the function (1-norm), or the square
root of “ energy” in the function (2-norm).  By way of review, a norm must satisfy three fundamental
properties,
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The choice of the norm will usually be tied to the experimental system.  Thus, if a transient radar receiver
responds to the peak magnitude of the received signal, then one should use the ∞-norm in the gain definitions.

There are a number of other characteristics of this gain definition that should be noted.  The units of
gain are meters, which is different than the unitless gain of the frequency domain.  Furthermore, the transient
gain is dependent upon (1) the shape of the waveform, and (2) the choice of the norm.  Thus, a transient gain
must always be specified in relation to these two parameters.  Note also that gain is a function of risetime (of
step-like waveform in transmission) or FWHM (of impulse-like waveform in reception).  Thus, gain is a
function of risetime in the time domain, as it is a function of frequency in the frequency domain for s = jω.
Note also that it is trivial to extend these concepts to two polarizations.  Furthermore, one can assign the term
antenna pattern to the variation of this gain as a function of angle.

One can apply bounds to all of the convolutions shown in (2.4), by taking the norm of both sides of
the equation.  For example, consider the equation for reception in (2.4).  If we take the norm of both sides of
the equation we find an upper bound on the received voltage as
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Thus, if some norm is applied to the incident field and to the antenna system response, then one can place an
upper bound on the norm of the received voltage.  Finally, we invoke the property that the p-norm of a
convolution operator is less than or equal to the 1-norm of the impulse response24, or g t g t( ) ( )≤ 1.
Thus we find, for a single polarization,
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This establishes a bound on the p–norm of the received voltage for a given incident field polarization.  Note
that in general we will not want to restrict ourselves to using p-norms, but if one chooses to one can invoke a
nice simplification.  Similar bounds can be applied to the transmit equation.

It may be useful to compare our gain definitions to those proposed by other authors.  O. Allen, et al,
have proposed a definition of gain in transmission mode as 20
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This is somewhat related to our earlier definition of gain if one uses the square of the 2-norm, however, there
is no time derivative in the denominator.  It is simple to show that without a time derivative, this definition of
gain is not meaningful in receive mode.

A related family of figures of merit has been proposed by R. Ziolkowski, for use in near field
arrays21.  He proposes a figure of merit that relates the radiated energy at a location in the near field to the
total energy accepted by the array.  This is similar to the definition of gain proposed by Allen et al., although
somewhat different in detail.  Ziolkowski does not consider reciprocity, but it is not yet clear how to do so in
the near field.  Recall that even in the frequency domain, gain is not defined in the near field.  Thus, these
figures of merit were likely not meant to be a rigorous replacement for antenna gain in the time domain.  It
should also be noted that Ziolkowski uses norm concepts to arrive at his figure of merit, much in the same
spirit as we use them here.

Now that we have established a gain definition, it is appropriate to apply it to a transient radar
equation.  Consider Figure 2.2, which shows a transmitting antenna, a scattering object, and a receiving
antenna.  For the moment we provide the equations for the most general case, including all polarizations and
allowing for different transmit and receive antennas.  Later, we will simplify by allowing only a single
polarization, with identical transmit and receive antennas in the same location.

One can calculate the radiated field in terms of the voltage wave launched onto the antenna feed as
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where r is the distance from the transmitting antenna to the scatterer, Zc is the feed impedance, and 1r
→

 is the
direction of the radiated field.  The scattered field is

E r t
r

t E r t r r cscat
i r i

rad
r

→ → ↔ → → → →′ = ⋅ ′ − + ′( , , ) ( , , ) ( , , ( ) / )1
1

4
1 1 1

π
Λ (2.13)



6

dV t
dt

inc b g

Scatterer
V trecb g

E r trad r
→ →

( , , )1

E r tscat i
→ →′( , , )1

Figure 2.2.  The configuration for a transient radar equation.

where r’ is the distance from the scatterer to the receiving antenna, 1i
→

 is the angle of incidence of the
scattered wave on the receiver, and Λ
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the received voltage wave is

V t h t E r t r r crec
rec i

scat
ib g = ⋅ ′ − + ′

→ → → →
( , ) ( , , ( ) / )1 1 (2.14)

Putting it all together, we find a total response of
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Finally, the above equation may be bounded by
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These last two equations may be considered a time domain analog of the standard radar equation in the
frequency domain.

Let us now simplify the above equations in a variety of ways.  First, we assume that the transmit and
receive antennas are located in the same position (monostatic case), and that their characteristics are identical.
Thus, 1 1r i

→ →
= −  and h t h trec r trans r
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=( , ) ( , )1 1 .  In addition, we consider for simplicity only one component of

the radiated and received field, for example, the horizontal or h component, and assume that the vertical or v
component is zero  We can then convert the radar equation to
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where the convolutions commute, if one wishes.  One can then establish a bound on the received signal,
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Note the interesting double convolution h t h th h( ) ( ) ,  whose norm is a part of the bound on the received
voltage.

III.  OPTIMIZATION OF REFLECTOR IRA FEED IMPEDANCE

If one applies our definition of gain to the impulsive portion of the simple model of the reflector
IRA, one arrives at a gain of D/(2fg

1/2).  This suggests that the gain always gets better at lower feed
impedances.  This leads to increasingly fatter antenna feeds with more feed blockage, so we reach a
contradiction.

The problem arises because the approximate model for the impulsive portion of the field was
developed by ignoring feed blockage5.  Recall that the surface integral was calculated by converting an
aperture surface integral to a contour integral around the border of the aperture.  Consider Figure 3.1, which
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shows one-fourth of the aperture that must be integrated.  On the left is the contour that was integrated
originally5.  A better aperture (for two arms), which accounts for feed blockage is shown in the center.  Often
one will use four arms instead of two, in order to reduce the feed impedance, so we also show on the right a
contour appropriate for the four-arm configuration.
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C4

Figure 3.1. The old contour for the aperture integration (left), and the corrected contours for a two-arm
(center) and four-arm (right) configurations.

To clarify the point, we review some of the theory of radiation from apertures.  Consider the an
aperture field that turns on suddenly with a step-function time dependence.  We construct a complex aperture
electric field function whose real and imaginary parts correspond to the x and y components of the aperture
electric field.  This complex field is expressed in terms of a complex potential function5.  Thus,
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where the complex potential function can be found in Smythe22.  In the above formulation, ∆v is the change
in v around one of the conductors, and ∆u is the difference in u from one conductor to the other.  It was also
shown that the radiated field on boresight is5
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In the above equation, Sa is the portion of the aperture that is not blocked by the feed, and Ca is the contour
around this aperture.  All contour integrals in this paper are in the counterclockwise direction.  A high-
impedance approximation was made which claimed that feed blockage could be ignored, and that the portion
of the contour integral along the conducting wire was very small.  Under this approximation the integral is
calculated as ha = D/2.  This provided the impulsive portion of the radiated field in (1.1)  A more accurate
integral, however, excludes the portion of the aperture integral that is blocked by the feed, as shown in the
center and right of Figure 3.1.  Note that Figure 3.1 shows one-fourth of Ca.

We have plotted the value of ha for a two-arm circular cone configuration using the improved
contour in Figure 3.2.  Our plot is for a radius of 1 meter.  The gain, using the 1-norm,  is just ha/fg

1/2 and this
is also plotted in Figure 3.2, again for a reflector with a radius of 1 meter.  The gain is a slowly varying
function that peaks around 312 Ω at a value of 0.85 m.  Note that for this type of antenna, it is not necessary
to specify the driving waveform in order to specify a gain, since all waveforms give the same result.

If one uses four arms, then there is slightly more feed blockage, but the input impedance is reduced
by a factor of two.  This makes it considerably easier to build a balun to match the impedance of the feed line,
which is typically 50 Ω.  We plot for this configuration ha and gain as a function of feed impedance in Figure
3.3.  Note that the gain peaks at 406 Ω, at a value of 0.81 m.  If one has two 400 Ω feeds in parallel, the net
input impedance is 200 Ω, which is a convenient value of impedance for the output of a balun with a 1:4
impedance ratio4.  Thus, the peak in gain near 400 Ω is fortuitous.

This concept can be extended to a variety of other cases, including different feed geometries, for
example, feeds constructed out of flat plates that are either coplanar or facing.  Many of these other cases
have been developed by Farr13.
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Figure 3.2. Plots of the effective height ha  of the aperture (left) and the gain (right) as a function of feed
impedance for a reflector IRA with two circular cone feeds.
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Figure 3.3. Plots of the effective height ha  of the aperture (left) and the gain (right) as a function of feed
impedance for a reflector IRA with four circular cone feeds.

IV.  ANTENNA PATTERN OF A REFLECTOR IRA

The simplest definition of an antenna pattern in the time domain is simply to plot the gain as we
defined it earlier in this paper as a function of angle.  In order to calculate the gain as a function of angle, one
must first calculate the radiated field as a function of angle.  Recall that to calculate the field on boresight, we
used the integral of the electric field over the entire aperture.  To calculate the step-response radiated field off
boresight, one can show from time delay considerations that the radiated field off-boresight at a given point in
time is proportional to a line integral of the electric field over the aperture.  This radiated field varies as the
value of the line integral sweeping across the aperture. (Figure 4.1).  Thus, the step-response radiated far
fields in the H- and E-planes are proportional to the normalized potentials Φ(h) and Φ(e), which are defined as
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where the contours C1(x) and C2(y) are shown in Figure 5.1.

C (x)1 C (y)2

Figure 4.1.  The location of the line integrals C1(x) and C2(y) as a function of position in the aperture.

To evaluate the above integrals, we use the fields and potentials for round wires.  Thus the potential
function is22,

w j a j a
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and the fields are calculated from this potential from (3.1).  After substituting into (4.1), we find
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(4.3)

The details of the radiated field calculation have been worked out by Farr and Baum13.  The final result for
the radiated field in the E- and H- planes as a function of time is

E r t
V

r

cth
y

o h( ) ( )( , )
cot( )

sin( )

→ →
=

− F
HG
I
KJ1

2

θ
π θ

Φ   ,   E r t
V

r

cte o e( ) ( )( , , )
sin( ) sin( )

→ →
= ±

− F
HG
I
KJθ

π θ θθ1
1

2
Φ    (4.4)

where θ is the angle from boresight.  These are plotted in Figure 4.2 for round-wire feeds at 400 Ω.  Note that
feed blockage has been ignored in this formulation.
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Figure 4.2.  Step response of the radiated field in the H-plane (top) and E-plane (bottom).

Now that we have the step response, we must find the band-limited step response before calculating
the gain.  This is necessary because the step response is ill-behaved on boresight, where it becomes an
approximate delta function.  Since the p–norm of the approximate delta function only exists for the 1-norm,
we have more flexibility in our choice of norms by converting to the band-limited response.  We do so by
driving the antenna with the integral of a Gaussian waveform with a finite risetime.  We then convolve the
step response with derivative of the driving voltage (a Gaussian).  Thus, we have for the driving voltage

dV t

dt

V

t
eo

d

t td( ) ( / )= −π 2
, t tFWHM d= 0 940. (4.5)
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( )V t
dV t

dt
dt

t
=

′

′
′

−∞∫ ( )
, t td10 90 1023− = . (4.6)

where tFWHM is the Full Width Half Max of dV/dt, and t10-90 is the 10-90% risetime of V(t).  Note that we
have expressed this conveniently in terms of the derivative risetime, which is inversely proportional to the
radiated field for these types of antennas.  The definition of the derivative risetime of a waveform is

( )t
V t

dV t dtd =
max ( ( ))

max ( ) /
(4.7)

The radiated field is now calculated simply from

E r t
V

dV t

dt
E r t

o

step( , , , )
( )

( , , , )θ φ θ φ=
1

(4.8)

where E r tstep ( , , , )θ φ  is the step response in the E- or H-plane, as calculated above.  We can reduce the
number of cases that need to be calculated by defining a rise parameter Td as

T
t

t

c t

ad
d

a

d= = (4.9)

where a is the aperture radius.  All problems with equal rise parameters have the same shape radiated field.
Thus, all problems with the same Td can be characterized by a single curve with proper scaling.

The antenna pattern is now just our previously defined gain measured as a function of angle in the E-
and H-planes, as defined in the transmission case of (2.5).  Note that the gain has units of meters, and that the
gain is normalized to the radius of the antenna.  For our calculations we have used the ∞–norm, or the peak of
the radiated field, although many other norms might be suitable.  Note also that because we have been careful
with our definition of transient gain, our results also apply to the antenna in receive mode with a Gaussian
incident field.

A sample problem has been solved using this technique, and the results are shown in Figure 4.3.  We
find that the antenna pattern is broader in the H-plane than in the E-plane, because the antenna feed is narrow
in the H-plane and wide in the E-plane.

Angle (deg)

G
ai

n/
a

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20

H-plane

E-plane

Figure 4.3. Gain (∞-norm) in the H- and E-planes as a function of angle.  For this plot, Zc = 400 Ω, and
Td = 0.1 (e.g., a = 0.3 m and td = 0.1 ns).

V.  SAMPLE MEASUREMENTS

Finally, measurements of a reflector IRA, a lens IRA (Figure 1.1), and a TEM horn were made on a
tabletop scale model17, where half the antenna was built on a ground plane.  The lens IRA without the lens is
just a simple TEM horn, so measurements were made both with and without the lens for comparison.  The
reflector was 58 cm in diameter with an F/D of 0.48,  The reflector IRA had a single feed arm in the “facing
plates” configuration with an input impedance of 200 Ω, which would correspond to 400 Ω for a full model.
The TEM horn/lens IRA was 61 cm in diameter at its aperture, and the length of the TEM horn/lens IRA feed
section was 72 cm.  The feed impedance of the TEM horn/lens IRA was 94.25 Ω, which would correspond to
188.5 Ω for a full antenna.  The antennas was driven by a 40 V step function with a nominal 10-90% risetime
of 100 ps.  A “ limited angle of incidence, limited time” sensor16 was used to detect the signal in replicative



11

mode.  The sensor was placed on boresight at a distance of 6.1 m from the aperture of the reflector IRA and
5.2 m from the aperture of the TEM horn/lens IRA.

A sample measured waveform for the reflector IRA is shown in Figure 5.1, along with theoretical
predictions.  One sees in this data a prepulse, an impulse, and an undershoot immediately following the
impulse.  The theory describing the undershoot is still being developed, but the theory of the prepulse and
impulse already exist.  When taking into account the feed blockage, there was a difference of five percent
between the prediction and measurement of the waveform peak.

Sample measured waveforms for the lens IRA and TEM horn are shown in Figure 5.2, along with
theoretical predictions for the lens IRA.  Note that the lens provides about a factor of two improvement in the
radiated field.  Note also that the predications and measurements of the peak field for the lens IRA agree to
within six percent.
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Figure 5.1 Experimental results (left) and predictions (right) for the reflector IRA.  Note that the scales on
the scope are 500 ps/division horizontal and 50 mV/division vertical.  Since the effective height
of the sensor is 0.95 cm, this corresponds to a vertical scale of 5.26 V/m/division.

`

0 0.2 0.4 0.6 0.8 1

Time (ns)

-10

0

10

20

30

40

50

60

V/
m

Lens IRA

Figure 5.2 Experimental results (left) for TEM horn and lens IRA.  Theoretical results for the lens IRA are
on the right.  Note that the scales for the measurements are 500 ps/division horizontal and 100
mV/division vertical.  Since the effective height of the sensor is 0.95 cm, this corresponds to
10.5V/m/division vertical.
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VI.  CONCLUSION

We have considered here a number of extensions to the theory of IRAs.  First, we developed a
definition of gain that is as meaningful in reception mode as it is in transmission mode.  This led to a radar
equation in the time domain.  Furthermore, we developed an approach for optimizing the feed impedance of
reflector IRAs.  We have also found a simple way of calculating the antenna pattern of reflector IRAs.
Finally, we provided measurements which confirmed our predictions.
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