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Abstract 
 
 We present here the results of modifications and experiments on four versions of a solid 
18-inch diameter reflector IRA. We describe numerous experiments to increase the effective 
gain, reduce crosspol coupling, reduce sidelobes, and reduce TDR reflections at the end of the 
feed arms. We investigate reducing the crosspol by improving antenna symmetry with dummy 
cables. We also investigate the addition of a ground plane to reduce the crosspol and increase 
mechanical sturdiness. We also investigate adding absorber around the rim of the reflector to 
reduce the sidelobes. Finally, we investigate the use of a radome manufactured by MRC.  
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I.  Introduction. 
 
 We describe here the development of a solid reflector Impulse Radiating Antenna (IRA) 
through a series of modifications and improvements. We describe both the theoretical basis for 
the modifications and the experimental results. The antenna used for this series of experiments 
has an 18-inch diameter spun aluminum reflector with an F/D of 0.5. We develop in this note  
improved versions of the IRA-1 and IRA-2 over those previously described in [9] and [3], 
respectively. We go on to develop new designs for the IRA-3 and IRA-4, in an attempt to further 
increase gain, reduce crosspol, reduce sidelobes, and improve mechanical sturdiness. We 
document how well a number of new ideas work to improve antenna performance.  
 
 We begin with the IRA-1, which has feed arms located in the traditional position of ±45° 
from the vertical. The modifications to the IRA-1 from [9] include improving the symmetry 
about the vertical E plane, tuning the resistors for low reflection, and strengthening the feed 
point. Two previous IRAs with feed arms at ±45° had extremely flat TDRs at the resistors, so we 
thought it would be useful to investigate how flat a TDR we could achieve with an 18-inch 
diameter reflector. One of these earlier designs was a collapsible IRA with four-foot radius [3], 
and another was a six-foot diameter IRA with solid reflector [11].  
 
 Next, we consider the IRA-2, which has feed arms positioned at ±30° to vertical, in order 
to increase gain and decrease crosspol. The design of the IRA-2 is based on theory developed by 
J. Scott Tyo [1] and Carl Baum [2]. The design we tested here was previously described and 
characterized in [3], but we found problems in the earlier data that are corrected here. This 
allows us to compare the performance of the IRA-2 to both the IRA-1 and IRA-3.  
 
 Next, we consider the IRA-3, with a ground plane in the horizontal plane of symmetry, to 
reduce the crosspol and increase the sturdiness of the antenna. We performed a large number of 
experiments on the IRA-3 to improve the feed point design and the load resistor configuration. 
We also added a radome manufactured by Mission Research Corporation (MRC) to protect the 
antenna.  
 
 Finally, we repositioned the feed arms so their outer edge aligned with the outer edge of 
the reflector, resulting in the IRA-4. This was done to reduce the sidelobes, which might be 
enhanced by the high fields near the reflector rim. For the same reason, we also placed 
microwave absorber foam around the edge of the reflector. This was studied on both the IRA-3 
and IRA-4.  
 
 The technique for characterizing the antennas is the same as that used previously in [3]. 
The antenna measurements presented here were made using the outdoor time domain antenna 
range at Farr Research. The source antenna was a Farr Research Model FRI-TEM-01-50 sensor 
and the IRA under test was the receiver. The distance between the apertures was 10 m. The 
sensor characteristics are given in [4]. The time domain measurements are processed using the 
procedure given in [6], which is a simplification of the earlier procedure given in [5]. The 
effective gain was calculated from the raw data as described in [6].  
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 We also investigate the effects of improving the symmetry of the antenna, in order to 
reduce the crosspol coupling to the antenna. Carl Baum has shown in [7] that by carefully 
maintaining the symmetry of the antenna, the crosspol should be eliminated. We improved the 
symmetry of our antennas by adding dummy cables on the opposite side of the vertical plane of 
symmetry. We also redesigned our support structure near the feed point so it would be more 
symmetrical.  
 
 Next, we investigated eliminating the portion of the aperture field that contributes 
negatively to the radiated field. For all IRAs there is an area of the parabolic reflector between 
the feed arms where the electric fields have the incorrect polarity. This region is negligible in the 
IRA-1 through IRA-3, but it is significant in the IRA-4. A sketch of this region is shown in 
Figure 1.1 for the electrode configuration of the IRA-4 (±30û, Z0 = 200Ω) [8]. To address the 
problem, we investigated covering the relevant region with microwave absorber foam in the 
experiments where absorber foam is used to reduce the sidelobes.  

 
Figure 1.1.  Sketch of the aperture fields of one-quarter of an IRA reflector. 

 
 A final improvement to the antenna design is due to an improved splitter. The splitter is 
the portion of the balun that splits the 50-ohm input into two 100-ohm transmission lines. 
Improvements in the splitter were incorporated into the IRA-4, resulting in much smaller 
reflections.  
 
 We begin now with a discussion of improvements made to the IRA-1, with feed arms 
located at ±45° to vertical.  

Region of 
Negative Field 
Contribution 

Edge of 
Antenna 



 

 4

II.  IRA-1. 
 
 We investigate here an improved IRA-1, with feed arms at ±45°, building on our earlier 
work in [9]. We looked at this because earlier papers [3, 11] achieved extremely flat TDRs with 
a similar configuration. Such flat TDRs might be useful in radar applications. Our improvements 
included modifications to the feed point and to the resistors.  
 
 The IRA-1 has a 457 mm (18 in.) diameter aluminum reflector with an F/D of 0.5. The 
feed arms for this case have an included angle of 13.6°. For the original IRA-1 [9], the load 
resistance at the end of each feed arm was made up of two 400-ohm High Voltage Resistors 
(HVRs) mounted in parallel on a small circuit card. The load resistors were manufactured by 
HVR Advanced Power Components. For the improved IRA-1, shown in Figure 2.1, the high-
voltage resistors have been replaced with a distributed resistance. The HVRs were originally 
used so that the antenna could be driven with a high voltage pulser. The new load configuration 
has five resistor strings in parallel. Each string has three resistors in series for a total of 1000 
ohms in each string. Experiments using a Grant Applied Physics model HYPS source, with peak 
output greater than 3 kV, showed that the standard 2-watt metal film resistors could operate 
safely at 1.5 kV per resistor, due to the short duration of the pulse. The RF characteristics of the 
improved IRA-1 are shown in Figures 2.2�2.6. In addition to the distributed load resistors, this 
version of the IRA-1 has a more symmetric Teflon support at the feed point. It also has a dummy 
cable on the upper left feed arm to improve the symmetry about the vertical symmetry plane. 
Improving the symmetry in this way was intended to reduce the crosspol, as shown by Carl 
Baum in [7]. 
 

 
Figure 2.1.  IRA-1 (Feed arms at ±45°). 
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 In Figure 2.2 we show the TDRs of both the original and improved versions of the IRA-1. 
The original IRA has a large dip in the impedance at the load resistors. The distributed load 
resistance reduces this dip and greatly improves the TDR of the antenna. The normalized 
impulse response is shown in Figure 2.3. The aperture height for this antenna is 124 mm, which 
is 12% better than the original IRA-1. 
 
 In Figures 2.4 � 2.5, we show the effective gain of the IRA-1 on boresight for both the 
copol and crosspol configurations. In Figure 2.5 we see that there is considerable improvement in 
the crosspol rejection for the new IRA-1, as well as some improvement in the gain over most of 
the frequency range. The normalized antenna patterns are shown in Figure 2.6. 
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 Figure 2.2.  TDR of the IRA-1.  Figure 2.3.  Normalized Impulse Response. 
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Figure 2.4.  Effective gain of the IRA-1 on boresight for copol and crosspol. 



 

 6

2 4 6 8 10 12 14 16 18 20
-20

-10

0

10

20

30
Effective Gain on Boresight

Frequency (GHz)

dB
i

Original
Crosspol
IRA-1
Crosspol

 
Figure 2.5.  Comparison of the original and improved IRA-1. 

 

  
Figure 2.6.  Normalized antenna pattern for the IRA-1. Angle is in degrees.  
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III.  IRA-2. 
 
 We provide here corrected and expanded data on the version of the IRA-2 that was 
developed in [3]. This version is based on [1], with the feed arms positioned at ±30° to vertical. 
Photographs of the IRA-2 are shown in Figure 3.1. The feed arms for the IRA-2 have an 
included angle of 23.2°. The load resistor configuration is the same as for the original IRA-1, 
with High-Voltage Resistors (HVRs). . 
 

 
Figure 3.1. IRA-2 (feed arms at ±30°) with feed point and resistor details. 

 
 
 The TDR of the antenna is shown in Figure 3.2. As with the original IRA-1, we see a 
large dip in the impedance in the region of the resistors. Replacing the HVRs with a distributed 
load resistance would undoubtedly improve the TDR.  
 
 The normalized impulse response on boresight is shown in Figure 3.3. In the time 
domain, the FWHM of the impulse response is 34 ps and the aperture height is 133 mm. This is a 
7% improvement over the IRA-1 presented above and 19% better than the original IRA-1. Since 
the IRA-2 is structurally closer to the original IRA-1, this improvement is even better than the 
expected 10%. This may be due in part to improvements in the feed point construction. The TDR 
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at the feed point is somewhat better than that of the IRA-1. The effective gain is shown in 
Figure 3.4. In Figure 3.5 we overlay the gains of the IRA-1 and IRA-2. The boresight gain of the 
IRA-2 is higher than that for the IRA-1 especially from 14 to 18 GHz. The crosspol rejection for 
the IRA-2 is considerably better than the IRA-1, except at frequencies below 6 GHz.  
 
 Figures 3.6 � 3.7 are the pattern plots in the H and E planes. The data from MRC is on 
the left and the data from FRI is on the right. The measurements from MRC were carried out in 
the frequency domain and those from FRI were carried out in the time domain. We only made 
measurements from 0° to +45°, so our data is replicated for the other side. This explains why the 
FRI data is perfectly symmetric, while the MRC data is not.  
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 Figure 3.2.  TDR of the IRA-2.   Figure 3.3.  Normalized Impulse Response. 
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Figure 3.4.  Effective gain of the IRA-2 on boresight including crosspol. 
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Figure 3.5.  Comparison of IRA-1 and IRA-2 including crosspol. 

 

   
Figure 3.6.  Pattern of the IRA-2 in the H plane, MRC left, FRI right. Angle is in degrees.  

 

   
Figure 3.7.  Pattern of the IRA-2 in the E plane, MRC left, FRI right. Angle is in degrees.  
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IV.  IRA-3. 
 

We next added a ground plane to the IRA, resulting in the IRA-3. We tried the ground 
plane to further reduce the crosspol, by shorting out the horizontal component of the E field, and 
to enhance the mechanical structure. We also tuned the resistors in the IRA-3, in order to 
minimize reflections. We also rebuilt the feed point with a new support structure.  

 
The initial experiments performed on this version of the IRA were intended to improve 

the TDR in the area of the load resistance. For these experiments, we used the bottom half of the 
IRA-3, which normally has the feed cable along the axis of rotation of the antenna. For the case 
with a ground plane, this cable is attached to the surface of the ground plane, as shown in Figure 
4.1. Also shown in this figure is the feed arm support ring. This ring is made of UHMW, which 
has a relative dielectric constant of 2.3. Using only half of the IRA made it possible to speed up 
the experimental process, since we only had to construct two load resistor configurations for 
each test, instead of four. While tuning the resistors, we found that the standard ground plane 
was much too small, so we used a larger ground plane for many of the experiments.  

 
 

 
 

Figure 4.1.  Half IRA-3 with ground plane and feed from the rear. 
 

 
In the first experiments, we used five 1-kΩ resistors at the end of each arm, in place of 

the two 400-ohm HVRs used in the past. It was hoped that distributing the resistance over the 
end of the feed arm would improve the TDR, as it did for the IRA-1. Although several 
configurations were tested, we found that a distributed load was not optimal for the IRA-3 with 
feed arms positioned at ±30û. All of the configurations tested with a distributed load produced a 
large dip in the impedance in the region of the load resistors.  

 
 The dip in impedance at the load resistors is due in part to the electric field incident on 
the center of the parabolic reflector at time F/c where c is the speed of light in free space. The 
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reflected field has a ramp-function time dependence, and it appears in the TDR as a negative dip 
at time 2F/c [10]. We conducted a series of experiments to determine the effects of various load 
resistor, feed arm, and feed point configurations. Noting that the large dip in the TDR is a 
capacitive effect, we attempted to add some inductance at the right place to counteract it. The 
inductance was added by using small hand-made coils of various sizes and shapes, with 2 to 16 
turns. We found 10 turns worked particularly well. The coils were wound in a figure 8 pattern to 
reduce the magnetic moment of the coils, thereby reducing emissions from the coil [12]. We 
tried various feed arm lengths, as well as many different resistor and coil configurations.  
 
 In Figure 4.2, we show a detail of the load configuration and the associated TDR which 
gave the best results. This TDR was taken on a complete 4 arm IRA. Note that a reverse taper at 
the end of the feed arm begins just before the 9-inch point, which is one focal length from the 
feed point. So the inductance is seen at the same time that the wave strikes the center of the 
reflector. There are several important things to notice about the TDR of this antenna. First, the 
TDR at the feed point is reasonably typical of what we are able to achieve on the IRAs. Second, 
the impedance of the feed arms is reasonably flat and close to 50 ohms, except near the plastic 
support ring.  
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Figure 4.2. Two strings with a 10 turn figure 8 coil, a 180 Ω resistor, and a 220 Ω resistor. 
 
 Next, we moved the lower feed to the front of the feed point, as shown in Figure 4.3 
(shown here upside down). Up to this point, the lower feed cable has always approached the feed 
point from the rear (up through the center) as shown in Figure 4.1. This is also true of the IRA-1 
and IRA-2, since one feed cable passes through the center support tube on the axis of rotation. 
The feed configuration on the other side of the ground plane was not changed. Moving the feed 
to the front launches the wave toward the reflector, which improves the TDR at the feed point 
and the overall antenna gain. In doing this, the crosspol rejection was also somewhat improved. 
We also tried �unzipping� the coax cable at the feed point, but we found this did little to improve 
the TDR. Since a zipper connection is time-consuming to build, we did not pursue that design 
further.  
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Figure 4.3.  IRA-3 with the feed from the front. 
 
 In the above configuration, the load was made up of two parallel strings, each with a 10 
turn figure 8 coil, a 180-ohm resistor, and a 220-ohm resistor. The resistors were carbon 
composition types, which have almost no inductance. Since the above configuration worked 
well, it appears that some distributed inductance may be helpful. For this reason, we removed the 
coils and replaced the carbon composition resistors with metal film resistors, which have a small 
inductance. Figure 4.4 shows the load configuration and the associated TDR for this 
modification. The TDR for this case is almost identical to the one in Figure 4.2. Therefore, we 
stayed with this load configuration since it is considerably easier to build, and stronger. 
Furthermore, the metal film resistors are more readily available than the carbon composition 
type.  
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Figure 4.4.  Four 200 Ω metal film resistors in series/parallel. 
 
 Next, we investigated covering the resistors with microwave absorber foam, in order to 
reduce spurious radiation that could increase sidelobes. First, the load regions were first wrapped 
with plastic to insulate the load from the slightly conductive foam. Next, the area was covered 
with 2 layers of 1/8-inch thick absorber foam. We then took a TDR of the configuration, and we 
observed a drastic drop in impedance at the resistors, due to the presence of the foam. We found 
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this even though the foam was not in contact with the resistors. Due to the very poor TDR, this 
configuration was abandoned.  
 
 The next modification to the IRA-3 was the addition of dummy cables to improve the 
symmetry of the antenna near the feed point. C. E. Baum has shown in [7] that the crosspol 
coupling in an IRA can be greatly reduced by maintaining the symmetry about horizontal and/or 
vertical planes of symmetry. In this case, we chose to maintain symmetry about the vertical 
plane. Thus, we place a short section of cable between the feed point and UHMW support ring, 
as shown in Figure 4.5 (left). On the bottom side of the ground plane we added another dummy 
cable, as shown in Figure 4.5 (right). When we reconnected the feed arms to the center conductor 
of the feed coax, we were not able to get the connection as close as desired. Therefore, the TDR 
at the feed point, shown in Figure 4.6, is not quite as good as it was in Figure 4.3. Very close 
connections at the feed point improve the gain at high frequencies.  
 
 In spite of the long connection at the feed point, the overall characteristics of this antenna 
are quite good. The normalized impulse response is given in Figure 4.7. The FWHM of the 
impulse response is 35.5 ps and the aperture height is 139 mm. The effective gain is shown in 
Figure 4.8. The peak effective gain of the antenna is 26.5 dBi. The average crosspol rejection is 
24 dB. In Figure 4.8 we include the gain of the IRA-2 for easy comparison. The normalized 
antenna patterns are shown in Figures 4.9 and 4.10. 
 
 

   
 

Figure 4.5  IRA-3 with dummy cables added for symmetry. 
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 Figure 4.6.  TDR with dummy cables.  Figure 4.7.  Normalized Impulse Response. 
 

2 4 6 8 10 12 14 16 18 20
-20

-10

0

10

20

30
Effective Gain on Boresight

Frequency (GHz)

dB
i

IRA-2
Crosspol
IRA-3
Crosspol

Peak CoPol Gain = 26.5 dB

Ave Rejection = 24 dB 

 
Figure 4.8.  Effective Gain on Boresight of the IRA-3 with the IRA-2 included for comparison. 

 

  
 Figure 4.9.  Pattern in the H plane.  Figure 4.10.  Pattern in the E plane.  
 Angle is in degrees.  Angle is in degrees. 
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 Next, we consider a radome that was attached to the IRA-3 by MRC Dayton. This was 
attached to the original (prototype) IRA-3 (IRA-3-0). The radome is made from two glass/epoxy 
skins with a Nomex core. The IRA-3 with the radome is shown in Figure 4.11. The radome 
protects the feed elements of the IRA, and it may be required if the antenna is mounted to the 
outside skin of an aircraft.  
 
 

 
 

Figure 4.11.  IRA-3 with radome manufactured by MRC.  
 
 
 We now consider the performance of the antenna with the radome attached. The radome 
only slightly changes the TDR as seen in Figure 4.12. In Figure 4.13 we see that the peak of the 
normalized impulse response is reduced by about 10% from that shown in Figure 4.6 before the 
radome was installed. In Figure 14 we plot the gain of the IRA-3 both with and without the 
radome. Below about 10 GHz the gains are almost identical. The radome reduces the peak gain 
slightly, but does not appreciably change the aperture height. We provide pattern plots in Figures 
4.15 - 4.16 from both FRI and MRC, generated by two different experimental methods (time 
domain versus frequency domain). The pattern plots using the two methods are in very good 
agreement. 
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 Figure 4.12.  TDR of IRA-3 with radome.  Figure 4.13.  Normalized Impulse Response.  
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Figure 4.14.  Effective gain of the IRA-3 with and without the radome.  
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Figure 4.15.  Pattern of the IRA-3 in H plane, MRC left, FRI right. Angle is in degrees.  
 
 

   
 

Figure 4.16.  Pattern of the IRA-3 in the E plane, MRC left, FRI right. Angle is in degrees.  
 
 
 The last modification to the IRA-3 was the addition of absorber foam around the rim of 
the reflector dish. The foam was intended to reduce the fields near the edge of the reflector, and 
to reduce the E field in areas where the polarity is reversed. The IRA-3 with the foam in place is 
shown in Figure 4.17. The foam was 1.125 inches thick, and according to the manufacturer, this 
foam is designed for use at frequencies above 2.5 GHz. The foam extends over the portion of the 
reflector between the feed arms where the E field has the incorrect polarity. The radome was 
replaced before making the measurements reported below. 
 

Angle off boresight in E-plane 

Angle off boresight in H-plane 
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Figure 4.17.  IRA-3 with absorber foam. 
 
 We now consider the results with the foam. The foam changes the late time TDR a little, 
as shown in Figure 4.18. We see from Figure 4.19 that the foam reduces the peak of the impulse 
response. The aperture height for this IRA is 112 mm, which is somewhat lower than expected. 
In Figure 4.20 we see that the peak gain is reduced by about 1 dB and the average crosspol 
rejection is reduced by nearly 3 dB, when compared to Figure 4.14. These compromises in 
performance might be acceptable if the sidelobes were reduced. Unfortunately, little change can 
be seen in the sidelobes as shown in Figures 4.21 � 4.22. 
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 Figure 4.18.  TDR with radome and foam.  Figure 4.19.  Normalized Impulse Response.  
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Figure 4.20.  Effective gain of the IRA-3 with radome and absorber foam. 

 

   
 Figure 4.21.  Pattern in the H plane.  Figure 4.22.  Pattern in the E plane.  
 Angle is in degrees.  Angle is in degrees. 
 
 
 As a result of our studies on the IRA-3, we have learned a number of things. We have 
found that adding a ground plane reduces crosspol and makes the antenna more sturdy. We found 
a configuration of metal-film resistors that reduces reflections at the ends of the feed arms. We 
found that feeding the antenna from the front provides lower TDR losses at the feed point. We 
found that dummy cables do not reduce crosspol appreciably. We found that adding foam does 
not reduce sidelobes. Finally, we found that adding a radome seems to affect performance very 
little. We next turn our attention to the IRA-4.  
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V.  IRA-4.  
 
 Finally, we repositioned the feed arms so their outer edge is aligned with the outer edge 
of the reflector, resulting in the IRA-4. We did this to reduce the sidelobes by concentrating the 
field closer to the center of the reflector. Modifying the feed arm location in this way required 
recalculating the included angle of the feed arms to match the required 200-ohm impedance. The 
included angle of the feed arms for the IRA-4 is 20°.  
 
 A second modification we made in the IRA-4 was the development of an improved 
splitter. This device has a 50-ohm SMA connection that splits into two 100-ohm 0.141" semi-
rigid lines. The new splitter has an extremely flat TDR, as shown in Figure 5.1. We have 
overlaid the TDR of the splitter we used previously, manufactured by Prodyn Technologies, so 
one can see the  improved impedance match.  
 

0 2 4 6 8 10
-10

0

10

20

30

40

50

60
TDR - Splitter

Time (ns)

O
hm

s

FRI
Prodyn

 
Figure 5.1.  Comparison of splitters made by Prodyn and Farr Research. 

 
 Figure 5.2 is a photograph of the IRA-4. In this early data, this antenna does not have the 
dummy cables for improved symmetry. These cables will be added later in this report, and new 
results will be provided. The TDR is shown in Figure 5.3. The drop in impedance at the load 
resistors suggests that there is room for improvement in their design. This is not surprising, 
because the resistors were not tuned to the degree they were in then IRA-3. In Figure 5.4 we 
show the normalized impulse response. Based simply on the area between the feed arms where 
the E field has the wrong polarity, we expected the gain of the IRA-4 to be about 2 dB less than 
the gain of the IRA-3, and this is approximately what we observe in Figure 5.5. The aperture 
height is 126 mm, which is about the same as the IRA-3 before the dummy cables were added. 
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Figure 5.2.  IRA-4. 
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 Figure5.3.  TDR of IRA-4. Figure 5.4.  Normalized Impulse Response.  
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Figure 5.5.  Effective gain of the IRA-4. 
 
 The patterns in the H and E planes are shown in Figures 5.6 and 5.7. Recall that the goal 
of this design was to reduce the sidelobes. However, in the H plane the sidelobes are quite 
pronounced, so moving the feed arms closer to the center does not seem to help.  
 

 

 
 Figure 5.6.  Pattern in the H plane.  Figure 5.7.  Pattern in the E plane.  
 Angle is in degrees.  Angle is in degrees. 

 



 

 23

 Next, we added dummy cables to the IRA-4. The ground plane on the IRA-4 is extended 
slightly, to provide more room for the lower feed cable to approach the feed point from the front. 
The locations of the dummy cables are shown in Figure 5.8. Note that the cables are extended 
considerably further from the feed point, and that the cables are not right on the front edge of the 
ground plane as they were on the IRA-3.  
 

  
 

Figure 5.8.  IRA-4 with symmetry cables installed. 
 

We now provide the results of adding the dummy cables to the IRA-4. The TDR of the 
antenna is shown in Figure 5.9. The peak of the normalized impulse response increased slightly 
as shown in Figure 5.10. The aperture height is 118 mm, which is a 7% improvement. In Figure 
5.11 we see that the peak effective gain and the average cross polarization rejection are improved 
by approximately 1 dB. We expected that adding the dummy cables would improve the crosspol 
rejection considerably more than 1 dB, however, we have seen little effect from the dummy 
cables.  

 
There are a couple of items that may be worth noting concerning the measurements in the 

crosspol configuration. First, the dynamic range of the outdoor time domain antenna range is 
estimated to be about 30dB, so some of the crosspol measurements may be close to the noise 
level our system. Second, when making crosspol measurements, we normally rotate the antenna 
under test (AUT) such that the dominate E field is horizontal. A television transmitter is now 
located within 10 miles of the test range at about 60° off boresight. Since TV signals are 
horizontally polarized this could be a source of noise. We have noticed that the noise level with 
the AUT in the horizontal position is about twice what it is in the vertical position. This reduces 
the dynamic range by about 6 dB. 
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 Figure 5.9.  TDR of IRA-4.  Figure 5.10.  Normalized Impulse Response.  
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Figure 5.11.  Effective gain of the IRA-4 with symmetry cables. 

 
 
 
The antenna patterns are provided in Figures 5.12 - 5.13. The sidelobes at about 5 GHz in 

the H plane are about the same as before.  
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 Figure 5.12.  Pattern in the H plane.  Figure 5.13. Pattern in the E plane.  
 Angle is in degrees.  Angle is in degrees. 

 
 

 For a final comparison, we add absorber foam around the rim of the reflector dish on the 
IRA-4. The ¾-inch thick foam, shown in Figure 5.14, is designed for use at frequencies above 
3.5 GHz. Between the feed arms we extended the foam to cover the area where the electric field 
has the incorrect polarity. This is a larger area than that of  the IRA-3. Covering this area should 
improve the gain of the antenna.  

 

  
 

Figure 5.14.  IRA-4 with absorber foam around rim. 



 

 26

 We now consider the results obtained with the IRA-4 with dummy cables and foam. First, 
the TDR is shown in Figure 5.15, and it is largely unaffected by the addition of the dummy 
cables and absorber foam, as seen in Figures 5.3, 5.9, and 5.15. Next, the normalized impulse 
response is shown in Figure 5.16, which has changed little from the last iteration without the 
foam. Next, the effective gain and crosspol gain are shown in Figure 5.17, and they are compared 
to the IRA-3 with the radome and absorber foam. While the gain of the IRA-4 is about the same, 
the crosspol has increased. Finally, the antenna pattern is shown in Figures 5.18 - 5.19, where we 
see that there is no real reduction in the sidelobes with the use of the absorber foam. 
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 Figure 5.15.  TDR with dummy cables & foam.  Figure 5.16.  Normalized Impulse Response.  
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Figure 5.17.  Comparison of the effective gain of the IRA-4 and the IRA-3 (from Figure 4.20)  

 

 
 Figure 5.18.  Pattern in the H plane.  Figure 5.19.  Pattern in the E plane.  
 Angle is in degrees.  Angle is in degrees. 



 

 28

VI. Discussion. 
 
 In Table 1 we summarize the results of the antennas described in this paper, and on a 
number of additional minor variations. The table includes the major parameters of interest in the 
optimization of the IRA. The peak gain column includes not only the peak gain in dBi, but also 
the frequency at which it occurs. The minimum cross polarization rejection is included as well, 
but it may be of little value since it is frequently zero or negative, due to the high noise level in 
the crosspol signal. In cases where the value is negative it is set to zero. In the Load 
Configuration column of the table, the word �Inductive� refers to 2 strings of metal film resistors 
in parallel. The strings may have from 1 to 3 resistors. We had wanted to include sidelobe level, 
but this is difficult to quantify as a function of frequency, so it is not included.  
 
 From Table 1, we can observe that a number of important improvements have been made 
to the IRA. Moving the feed arms from ±45° to ±30° was a major improvement, as predicted by 
Scott Tyo [1] and Carl Baum [2]. This modification increases the effective gain (standard 
antenna gain minus return loss) and it dramatically reduces the cross-polarized effective gain.  
 
 Addition of the ground plane improved the mechanical properties of the antenna and 
improved the average crosspol rejection by 3 to 6 dB, depending on the specific versions of IRA-
2 and IRA-3 one compares. While the IRA-2 had high-voltage resistors while the IRA-3 had the 
improved load configuration, we believe that the load would make little difference to the 
crosspol rejection. When we added both a radome and absorber foam to the IRA-3 the crosspol 
rejection was reduced to approximately that of the IRA-2. One advantage of the ground plane in 
the IRA-3 and IRA-4 is that the feed cable that normally is attached to the feed point from the 
rear can now be connected from the front. This reduces the TDR reflections at the feed point, 
which improves the effective gain.  
 
 We also gained a better understanding of how to construct the feed point to maintain a 
reasonably flat TDR, thereby improving the high-frequency response. First, the length of the two 
100-ohm coax cables must be exactly the same length. In addition, the connections at the feed 
point must be as short as possible. In the case where a ground plane is present, this can be 
difficult, but a small triangle of metal soldered to the center conductor of the coax can reduce the 
inductance and aid in the attachment of the conductor to the antenna ground plane.  
 
 Another major improvement was the development of an improved splitter, which greatly 
reduced TDR reflections. As with the feed point, it is critical to use very short lengths of the 
center conductor to make the connection inside the splitter. It is also important to use a dielectric 
material inside the splitter that matches the dielectric constant of the insulator in the coax. We 
have also reduced the TDR reflections at the feed point and resistors. Reducing the reflections 
should improve the usefulness of IRAs for radar applications.  
 



 

 

 
Table 1.  Summary of IRA Measurements. 

 
Peak Gain Height Impulse, hN(t) Crosspol Rejection 
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dBi GHz mm m/ns ps dB dB 

IRA-1-0 ±45° HVR     24.1 15 111 4.3 35.8 0.0  6.8 
  ±45° Distributed     24.0 13 119 4.1 39.2 4.0 15.0 
  ±45° Distributed     25.4 14 124 4.7 35.6 3.9 15.0 
IRA-2-0 ±30° HVR     27.0 15 133 5.5 33.5 16.8 21.6 
IRA-2-4 ±30° HVR     28.0 17 140 5.8 32.8 9.0 21.6 
IRA-3-0 ±30° Inductive     25.8 16 124 5.1 34.0 13.7 27.6 
  ±30° Inductive     27.8 15 131 5.7 32.8 18.5 28.0 
  ±30° Inductive     26.5 14 139 5.4 35.5 4.1 24.0 
  ±30° Inductive     25.6 17 139 4.9 37.2 7.5 23.0 
  ±30° Inductive     24.7 14 112 4.2 36.2 1.6 20.3 
IRA-3-1 ±30° Inductive     27.0 16 128 5.2 34.7 13.0 30.0 
  ±30° Inductive     25.0 14 130 4.8 36.7 7.7 23.8 
IRA-3-2 ±30° Inductive     27.3 12 126 5.0 34.8 0.0 23.0 
  ±30° Inductive     22.7 12 110 3.9 37.5 0.0 20.3 
  ±30° Inductive     25.6 15 139 5.0 36.6 0.0 19.5 
  ±30° Inductive     24.3 15 120 4.2 35.6 0.0 21.7 
IRA-4-0 ±30° Inductive     24.7 12 110 4.1 37.4 4.0 18.8 
  ±30° Inductive     24.0 14 104 4.5 34.7 0.0 18.5 
  ±30° Inductive     25.0 13 118 4.5 36.6 0.0 20.4 
  ±30° Inductive     25.0 14 108 4.3 34.8 0.0 17.2 
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V. Conclusions. 
 
 Based on our experiments, we are able to make specific recommendations for 
improvements in the IRA design. By placing the feed arms at ±30û to vertical, we increased gain 
and reduced crosspol. By a variety of adjustments, we were able to reduce significantly the TDR 
reflections from three points on the antenna; the splitter, the feed point, and the resistors. This 
feature may be important in radar applications, which require low reflections. By including a 
ground plane, we reduced the crosspol and increased the mechanical strength of the antenna. We 
have also tested a radome for the antenna built by MRC, which seems to provide good protection 
to the outside of the antenna with minimal transmission loss.  
 
 We also tried several adjustments that did not help as much as we had hoped. We found 
that dummy cables added to maintain symmetry do not help very much in reducing crosspol. In 
addition, we were unable to reduce the sidelobes by reducing the fields near the rim of the 
reflector. We tried this both by moving the feed arms closer to the center of the reflector, and by 
adding absorber foam. It is possible that a thicker foam might be effective, but this may not be 
practical.  
 
 Of the four antennas we studied, it appears that the IRA-3 is the preferred configuration 
for most situations. The IRA-1 has lower gain than the IRA-3, with comparable reflection losses 
at the resistors. The IRA-2 has a higher crosspol than the IRA-3, and it is slightly less sturdy. 
The IRA-4 has slightly lower gain than the IRA-3, with higher crosspol and sidelobes.  
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