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Abstract

We provide here a new design for a sensor related to the Balanced Transmission-line
Wave (BTW) sensor with enhanced sensitivity. The new device is called a Balanced-Dipole
Antenna (BDA), because it maintains a balance between the electric and magnetic dipoles. By
exchanging the load and excitation port, this antenna can be used to look either left or right on an
aircraft. The characteristics of the BDA are calculated using a Method of Moments solution to a
static Poisson’s equation. Design guidelines are provided to give optimal impedance match for a
single-ended version of the sensor against an infinite ground plane, in order to provide a 50 Ω
match at late times.
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I. Introduction

A number of P×M antennas have been discussed in previous articles [1-4]. This class of
antenna is normally used in place of standard B-dot or D-dot sensors, where a directional, or
cardioid pattern is required. Such a device has a pattern that is proportional to 1+cos(θ) in both
principal planes. The cardioid pattern is due to a balance of the electric and magnetic dipole
moments. Other antennas that can be used on aircraft are discussed in [5].

The sensitivity of PxM antennas is determined by its loop area, and by its impedance
match. In [2], Farr et al described a BTW with a small loop area, and with low sensitivity. In [3,
4], Tesche et al described a class of PxM antennas with larger loop area, but with impedance
mismatches that also reduced the sensitivity somewhat.

In this paper we introduce a new PxM antenna that has a large loop area, and that is
matched to 50 ohms impedance at late time. The new configuration is called the Balanced Dipole
Antenna, or BDA. The BDA consists of a semi-cylinder against a ground plane, with
connections to 50 ohm cables or loads on either end. Such a device has a much higher electric
dipole moment than a cable above a ground. This tends to lower the load impedance, making it
easier to provide a late-time match to 50 ohms, which is commonly used in cables.

By matching the antenna to 50 ohms, we can achieve an interesting result. If we use the
BDA with a suitable switch, we can electronically switch the look direction of the antenna by
180 degrees. Thus, a BDA located on the top or bottom of an aircraft fuselage could be steered
electronically to look left or right, depending on the switch position. We call this feature a
reversible antenna pattern. Furthermore, if we use an array of BDAs, we can have a steerable
array that can have 360 degree coverage, if time delays are included.

Previous work on loaded loops or loop monopoles has appeared in [6-10]. In [6], a
combined E and B-dot sensor is described. In [7], the measurement errors in a singly-loaded B-
dot sensor are described. It was found there that electric field coupling reduced the accuracy, so a
doubly-loaded loop was recommended. In [8], a combined loop and electric dipole is described
that provides a directive pattern. In [9], a loaded loop is described that has equal electric and
magnetic field responses. In [10], a loop is considered with a distributed load impedance.

We begin by describing the new geometry of the BDA, and how it can be configured to
look left or right on an aircraft. We then review the calculation technique described in [3, 4], and
we describe how to extend it to the new geometry. Next, we provide general expressions for
BDA performance in both transmission and reception, for arbitrary angles of incidence. Finally,
we provide the equations for BDA performance when they are part of an array.
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II. Geometry of the BDA

The geometry of the BDA is shown in Figure 2.1. Here we see a semi-cylindrical sheet of
thin conductor above an infinite ground plane. There is a small gap between the semi-cylinder
and the ground plane on either end. One of the two gaps is loaded with a resistor, and the other
gap is the location of the feed connector. By making the loop broad, we lower its inductance, in a
manner similar to B-dot loops [11] and the MGL sensor [12-14].
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Figure 2.1 Geometry of the BDA.

Note that the impedance of the BDA is not matched at early times. Only the late-time
impedance is matched to 50 ohms. So the impedance is matched only for signals with risetime
lengths that are larger than the diameter of the semi-cylinder by a factor of 3 or so. We could
easily achieve both an early-time and late-time match by configuring the BDA as a transmission
line or BTW, as described in [2]. However, this configuration has considerably less sensitivity
and area than the semi-cylindrical design. More area is available with the cable-based designs of
[3, 4], however these designs are not impedance-matched at either early or late time, so there is
loss due to impedance mismatch. Of all the designs considered so far, we believe the semi-
cylindrical design described here provides the optimal sensitivity for a given risetime or
bandwidth.

If the BDA is configured such that the required load impedance is 50 ohms, we can then
replace the load with a 50 ohm cable. We can now feed the antenna from either side, sending the
maximum antenna pattern either to the left or right. This configuration is shown in Figure 2.2.
The antenna pattern for the configuration shown in Figure 2.2 has a maximum looking to the left
(–z direction), but if the antenna is fed from the right, it then has a maximum looking to the right
(+z direction). Thus, we say that the pattern is reversible.

A key component of the reversible pattern of the BDA is the loaded A/B switch. This is
nothing more that a single-pole, double throw (SPDT) switch, with a 50 ohm load attached to the
open port. Such devices are commercially available, with bandwidths up to a few gigahertz.
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Figure 2.2.  Configuration for using the BDA as a reversible antenna, which can look either left
or right depending on the switch setting. With the switch set to “A”, the antenna looks left.
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Figure 2.3. Loaded A/B switch, with switch set to “A”(left), and to “B” (right).
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Note that if the BDA is used just in receive mode, then it can be used to look both left
and right simultaneously. This is accomplished by removing the switch, and attaching a 50-ohm
receive channel to both ports A and B. A similar idea was discussed in [5]. In this configuration,
the transmit and receive antennas are different.

One might consider a few improvements to the basic design. In particular, one might
taper the cylinder near the feed points on either end, in order to provide a cleaner match to the
50-ohm cable. This technique is used commonly in MGL sensors, as described in [13, 14]. The
angle of the taper would provide a 50-ohm match at early time. Furthermore, at a single port, one
might split the feed into two 100-ohm lines, and feed the line with two 100-ohm lines with two
100-ohm tapers. This would tend to spread out the feed point more uniformly over the gap, and
this is also commonly done in MGL sensors [14]. Niether of these two improvements is included
in the numerical calculations of this paper, although they may be included in a later paper.

Finally, we note that an array of reversible BDAs can be placed either on the top or
bottom of an aircraft fuselage, as shown in Figure 2.4. In this manner, one can obtain a steerable
array, with a narrower beam than what could be achieved with a single element. The steerability
is implemented by inserting a set of time delays into each array element, either electronically or
mechanically. With suitable time delays, one could achieve nearly 360 degree coverage in
azimuth.

Figure 2.4. Possible arrangement of an array of reversible BDAs on the top or bottom of an
fuselage, to look either left or right.
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III. Theory

The calculation method used here is a straightforward extension of that used in [3, 4]. In
that paper, Tesche et al balanced the electric and magnetic dipoles of a wire PxM antenna above
a ground plane. The technique involved using a static method of moments code to calculate the
electric dipole moment of a wire. Furthermore, they used the loop area to calculate the magnetic
dipole moment. Finally, they balanced the electric and magnetic dipole moments by choosing the
correct load resistor. Since the wires were rather thin, the load resistor was typically on the order
of 500 ohms. In this paper, we replace the wire with a semi-cylindrical shell, in order to increase
the electric dipole moment, and reduce the value of the resistor. When the semi-cylinder has a
certain aspect ratio, the load impedance is 50 ohms, which provides a good match to cable.

There is little difference between the technique of [3, 4] and the technique of this paper.
Because we are using a cylindrical shell instead of a wire, the method of moments calculation of
the electric dipole moment must be modified to use rectangular plate basis functions, rather wire
segments. Other features of the calculation remain the same.

We begin the analysis with the requirement that the electric and magnetic dipole
moments are related by the speed of light in free space, or

xy mpc −= (3.1)

where py and mx are the electric and magnetic dipole moments in the x and y directions.
Furthermore, magnetic dipole moment is simply the current times loop area, for both the cylinder
and its image, so

L

o
x R

V
aIAm π22 −=−= (3.2)

where A = π a  is the area of the semi-cylinder, I is the quasi-static current on the semi-cylinder,
Vo is the quasi-static voltage on the semi-cylinder, and RL is the load impedance. Combining the
above two equations, we find the load impedance required to balance the dipole moments as

y

o
L pc

Va
R

π2
= (3.3)

All that is left now is to find the electric dipole moment py.

The electric dipole moment is calculated by removing the load resistor and charging the
semi-cylinder to Vo. A charge distribution )(r ′�σ  is set up on the cylinder, where r ′�  specifies a
location on the semi-cylinder. To find the charge distribution, we solve a static Poisson’s
equation, or
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where )()(* rr ′−=′ �� σσ  is the charge distribution of the image of the cylinder in the ground
plane, and dS’ is a unit of surface area on the semi-cylinder. To solve this efficiently, we have to
take advantage of two planes of symmetry, the x-y plane and the y-z plane. Once we have found
the charge distribution, )(r ′�σ , we can find the dipole moment simply as

∫∫∫∫
−−

′′′+′′′=

image
cylsemicylsemi

y SdrySdryp )()( ** �� σσ (3.5)

where yy ′−=′*  is the location of the image of a charge element. This provides the final result
we need to give us the electric dipole moment.

To solve the integral equation we use pulse basis functions and point matching. The
details are quite similar to a problem solved by Harrington in [15], so we refer the reader to that
book for additional details. The basis functions are flat rectangles, of sufficient quantity to
provide a good approximation to the semi-cylinder. Approximately 50 basis functions are used to
approximate the arc of the semi-cylinder. The width of the basis functions are then chosen so that
the rectangular basis functions are approximately square.

The difficult portion of the solution is the integral over the singularity, where rr ′= �� . In
that case, the integral must be carried out analytically, and is done so in [15, eqn. 2-31]. For our
rectangular basis functions, we assume the singular integral is the same as it would be for a
square of the same area.

Next, we provide results in the section that follows.
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IV. Results

We calculated the load impedance required to balance the dipole moments for a range of
geometries. This impedance is a function of the ratio of cylinder width, w, to cylinder radius, a,
and the results are shown in Figure 4.1. We find that when w/a = 1.9, the load impedance is 50
ohms. This provides a nice late-time match to a standard cable. Another point of interest might
be at an impedance of 100 ohms, where we need w/a = 0.6. This might be useful if one has two
halves of a sensor that feed into a single 50 ohm line.
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Figure 4.1. Load impedance for a semi-cylindrical P× M sensor as a function of width-to-radius
ratio.

We can check our results now by comparing to the data of [4]. We are able to do so
because a cable with given radius is approximately equivalent to a strip of width four times the
cable radius. So we have converted a few points in [4, Figure 31] with cable radius = 1 cm to
equivalent values of w/a, and we have plotted these values on Figure 4.1. From the plot we find
agreement to within a few percent. Since a round cable is only approximately equivalent to a
plate, this agreement seems quite reasonable.
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V. Transmission and Reception with a BDA

Let us calculate now the received voltage for a BDA for arbitrary polarization and angle
of incidence. Note that the BTW is a subset of a BDA, so the analysis is also valid for the BTW.
The sensor is oriented as shown in Figure 5.1. After we find the receiving characteristics, we
generalize the expressions to the transmission case.

We assume that the incident field is TEM and arrives from a direction r1
�

 at the origin is
described by
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where f(t) incorporates the time dependence and all the variables are shown in Figure 1. To find
the voltage received by the BDA, we need both Ey and Hx. Thus, using the standard
transformation from spherical to Cartesian coordinates, we have
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Figure 5.1. Geometry of a receiving BDA.
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Furthermore, since this is a TEM plane wave,
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E

H
Z
E

H θ
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θ −== , (5.3)

where Zo is the impedance of free space, so we have

[ ] )()sin()cos()cos(1)( tfEE
Z

tH
o

x φφθ θφ += (5.4)

Having described the incident field, we now calculate the received voltage.

The received voltage is the sum of received voltages due to two effects. The first voltage
is due to capacitive effect, and is due to the voltage induced across the capacitor formed by the
transmission line. The second voltage is due to an inductive effect, and is due to a changing
magnetic flux in the loop formed by the transmission line. The capacitive received voltage is
denoted by Vp(t), and the inductive received voltage is denoted by Vm(t). So the total received
voltage is

)()()( tVtVtV mprec += (5.5)

Using simple formulas for the voltage across capacitors and around loops, and also noting that
half of the voltage is induced in each resistor (or resistive load), we find
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p
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µ
−=−= (5.6)

where µo is the permeability of free space, c is the speed of light in free space, and A is the area
of the loop of the BDA, when looked at in along the x-axis.

While the second part of equation (5.6) is no doubt familiar as Faraday’s law, the first
part of equation (5.6) requires some justification. The simplest way to prove the first equation of
(5.6) is that for a plane-wave incident from the along the –z-direction, the two voltage sources
must be equal, because the dipole moments are equal. And since Ey = c µo Hx, the two sources
are indeed equal.

Another way to prove that the above equation is to calculate Vp explicitly when the BDA
is a BTW composed of a 50 ohm stripline, as described in [3], with no taper sections. In this
case, the stripline acts as a sensing capacitor, whose voltage is expressed as

dt
tdVCZtIZtV cc

p
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2
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2
)( −=−= (5.7)
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where C is the capacitance of the stripline and Zc is its characteristic impedance, 50 Ω. The
stripline has a length �, a width w, and a height h. If h is small compared to the risetime length of
the incident field and h/w is small, then several simplifications are possible. The voltage across
the plates is approximated by V(t) ≈  –h Ey (t) for closely spaced plates (small h). The capacitance
between the two plates is C = εo � w/h. And the characteristic impedance across the plates is Zc =
Zo h/w. Substituting these three relations into equation (5.7) proves the first expression in
equation (5.6).

Having proven (5.6), we can now find the received voltage by combining previous
results. Combining (5.5) and (5.6), we find
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Combining this with our previous expression for Ey in (5.2) and Hx in (5.4), we find

[ ] [ ]{ }
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tdfEE
c
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2
1)( φθ θφθφ +++−= (5.9)

This is our final result for a single BDA element.

As a check, we can consider what happens in the two principal planes of the sensor, with
dominant polarization. In the E-plane, φ = 90o, and Eφ = 0. Substituting into (5.9), we find

[ ]
dt

tdfE
c
AtVrec

)()cos(1
2
1)( θθ+−= (5.10)

This is the classic cardioid pattern, 1+cos(θ), we expect to see. In the H-plane, we have φ = 0o

and Eθ = 0. Substituting this into equation (5.9) we find

[ ]
dt

tdfE
c
AtVrec

)()cos(1
2
1)( φθ+−= (5.11)

Once again, we find the cardioid pattern that we expect, so our general result in (5.9) is
consistent with our expectations.

To determine the performance of the BDA in transmission, it is simplest to recast
equation (5.9) into the form of our normalized impulse response, as described in [16]. We do this
so we can easily handle the case of transmission, in addition to the case of reception we have
already addressed. Thus, by rearranging equation (5.9) we have
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where  “ •
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where )(tδ ′  is the derivative of the Dirac delta function, and Zcable = 50 Ω. Since we have the
receive equations in the standard form, we can now simply express the transmission equations as
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This completes the general description of the transmitted and received field from a single BDA.
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VI.  BDAs as Elements of Arrays

Let us now consider the expression if the sensor is displaced by a small amount from the
origin. This will be useful if the BDA is used as part of an array.

We assume that the angle to the far field is unchanged for a sensor with only a small
displacement from the origin. Thus, the sensor is located at r ′� , and the received voltage is the
same as it would be for a sensor located at the origin, with the exception of a time delay. So the
received voltage is adjusted to

)0,/1(),(
�

�

�

�� =′′−=′ ⋅ rcrtVrtV rrecrec (6.1)

This is expressed more simply as

)0',)cos()/((),(
�

�� =′−=′ rcrtVrtV irecrec θ (6.2)

where θi is the angle between r1
�

−  and r ′1
�

. This rather simple result will be useful if we build an
array of BDAs. In that case, there will be several locations of BDAs denoted by ir ′� , and the total
received voltage will be the sum of the individual responses, or
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This completes the analysis required to calculate the response of an array of BDAs.
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V. Conclusions

We have defined a new antenna geometry, the BDA, that is related to the BTW, and  that
has improved sensitivity over previous designs, for a given bandwidth. The electric dipole
moment of the proposed configuration was calculated using a static Method of Moments solution
to Poisson’s equation. The aspect ratio to obtain a 50 ohm match is w/a=1.9.
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