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Abstract

In this note we continue the development of optimization problems for IRAs.  Here we
optimize the impedance for infinitely long TEM horns (an approximation for finite-length horns)
and TEM horns with lenses, or lens IRAs.  These calculations are analogous to those carried out
for reflector IRAs in Part I of this paper [1].  We consider both TEM horns whose plates are flat,
and whose plates are confined to a circular arc.  We also consider configurations in which the
fields in the entire aperture are allowed to radiate, and configurations in which only the fields
between the plates are allowed to radiate.
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I. Introduction

When designing TEM horns and lens IRAs for radiating a transient signal, it is unclear
how best to choose the feed impedance to provide optimal performance.  Normally, one has a
fixed amount of aperture area within which to build the antenna, and one can choose any
impedance one wants within this aperture.  This paper addresses this problem for a number of
configurations related to TEM horns and lens IRAs, as shown in Figure 1.1.  We calculate here
the feed impedances that produce the optimal radiation for a given input power, with the aperture
constrained to a circle of a given radius.

This paper builds upon the work of [1], which treated the same problem with respect to
reflector IRAs.  The present problem is in some ways easier than the reflector IRA problem,
since there is no need to consider aperture blockage due to the feed arms, as there was in [1].

We first treat the case of a TEM horn with flat, long plates, and with an infinite aperture.
The plates are confined to a circular aperture of constant radius.  Antenna gains are calculated as
a function of impedance, and the feed impedances which achieve optimal gain are determined.
This theory is then modified for the case where only the fields between the plates are allowed to
radiate.  This second case is useful in lens IRA design, in which only the fields between the
plates are focused.  Note that reflections from the dielectric lens are ignored, however, the error
introduced by this effect is typically only a few percent.  We then repeat the same calculations for
a TEM horn built with curved plates, again treating the cases of an infinite aperture and a
blocked aperture.

Let us begin now with the case of a TEM horn built from flat plates.

Lens
TEM feed

Figure 1.1.  A lens IRA, or without a lens, a TEM horn.
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II.  Optimization of a TEM horn with Flat Plates

The problem we wish to solve is shown in Figure 2.1.  While keeping the flat plates
within a circle of radius ao, we determine how to choose b/a in such a way that optimizes the
radiated field, for a given input power.  This configuration is essentially what one would see if
one looked at the front of a long TEM horn.

There are actually two problems that will be addressed.  First, we assume an infinite
aperture, as shown on the left in Figure 2.2.  This is an approximation to a long TEM horn with
no lens.  Second, we consider the case where only the aperture fields between the plates are
allowed to radiate.  This would apply to a lens IRA, in which only a portion of the aperture is
focused.  It would also apply to an antenna that must be located behind a conducting wall.

Figure 2.1.  Configuration to be optimized.

Figure 2.2.  Two cases for optimizing the radiated field of a flat TEM horn, infinite aperture (left)
and blocked aperture (right).
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First, we specify the characteristic impedance of the feed.  The impedance is determined
from [2,3]
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where K(m) and E(m) are the complete elliptic integrals of the first and second kind, and F(φo|m)
and E(φo|m) are the incomplete elliptic integrals of the first and second kind.  As usual,
fg = Zc/Zo, where Zo = 376.727 Ω.  To find fg for a given value of b/a, one must solve
numerically the above set of equations.  Since the aperture is constrained to be of radius ao, the
relationship between a and b is expressed as
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To obtain the radiated fields, we must find the fields in the aperture.  Thus, we need to
find a potential function in the form
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When cast into this form, the aperture field and feed impedance are [2, 3]
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where ∆u is the change in u from one conductor to the other, and ∆v is the change in v as one
goes around one conductor.  We now need a suitable complex mapping to fit the problem.

The potential function that describes the aperture is [2, eqn. 2.15]
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This is the simplest form.  Another form is used in [3,4], but it is less convenient because the
conductors are located on surfaces of constant v instead of the more customary constant u.  As a
cautionary note, we point out that most numerical packages expect the first argument of the
incomplete elliptic function, E(w|m), to be in the form of an angle.  Thus, the incomplete elliptic
integral has to be cast into the form of E(am(w|m)|m), where am(w|m) = arcsin(sn(w|m)) is the
Jacobian amplitude function.  A plot of the resulting complex mapping appears in Figure 2.3.
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Figure 2.3.  Complex potential map of the parallel plate configuration, for Zc = 100 Ω.
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Next, the impedance was calculated using (2.1), and this is plotted as a function of b/a in
Figure 2.4.  Note that we have used a low-frequency asymptotic form of the impedance [3],
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This form was used for b/a < 0.3.

The figure of merit we use for the radiated field is the transient power gain (normalized to
constant input power), as defined in [1,5,6].  Thus, we have

G h
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g
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where ha is the normalized integral over the aperture field [7],
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and Sa is the total surface over which radiation occurs.  This integral will be calculated for the
two configurations as a function of Zc.

Let us pause for a moment, to consider whether the figure of merit, Gp, makes sense.  To
see why our expression of gain in (2.7) is reasonable, we recall that the fast part of the field
radiated from an aperture on boresight is [6]
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Furthermore, the received voltage for an incident field on boresight is
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Thus, both the radiated field and the received voltage are proportional to  power gain.  Note also
that the voltage is cast into the form of square root of power, by dividing by f g .  On this basis,
our definition seems reasonable.
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Figure 2.4.  Impedance of two parallel plates.
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A.  Flat Plates with Infinite Aperture

We now calculate ha and Gp for two cases.  First, we consider the case of an infinite
aperture, as shown on the left in Figure 2.2.  In this case, it is particularly simple to calculate ha,
since it can alternatively be expressed in terms of the dipole moment of the charge in the aperture
[7].  Thus,

h
q x y y dA

q x y dAa = zzzz
( , )

( , )
(2.11)

where q(x, y) is the charge density on the conductors, and the integrals are carried out over all the
conductors in the aperture.  Since all the charge is located at y = ± b, the value of ha is calculated
trivially as

h ba = (2.12)

We have plotted ha/ao as a function of Zc in Figure 2.5.  As expected, at high impedances it
approaches unity asymptotically.  This is the expected result because for a pair of thin wires, we
know from [7] that ha = ao.

Finally, we have plotted the power gain, G h fp a g= / , in Figure 2.6.  The peak occurs

at Zc = 242.3 Ω,  where the power gain is 1.09 ×  ao.  At this point, b/a = 1.82.
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Figure 2.5.  Normalized aperture height for the infinite aperture with flat plates.
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Figure 2.6.  Normalized power gain for the infinite aperture with flat plates.

ha/ao

ha/(ao fg1/2)

Zc (Ω)

Zc (Ω)



10

B.  Flat Plates with Blocked Aperture

Next, we calculate ha for the case of a blocked aperture, as shown on the right in Figure
2.2.  This is the normal case of interest to the antenna designer.  Only a portion of the aperture
field is included in the aperture integral, because only that portion is focused.

To calculate ha , we express it as a contour integral [1,6,7], i.e.,

h
v

v dya
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= − z4
∆

ζb g (2.13)

where ∆v is the change in v around a conductor.  In addition, Ca is a contour integral over one
quadrant of the exposed portion of the aperture, as shown in Figure 2.7.  To calculate this
integral, we note that the integrals over C1 and C3 are identically 0, since there is no change in y.
Furthermore, the integral over C4 is also zero, because v = 0 there.  Therefore, we need only
calculate the integral over C2.

Figure 2.7.  Definition of the contour Ca.

Calculating the integral over C2 presents us with a challenge, because there is no easy
way to calculate v(ζ).  Normally, one would find v from the complex contour mapping, i.e.,
equation (2.5).  But in the present case there is no simple way to invert the contour mapping to
find v in terms of ζ.  Thus, one would have to solve (2.5) numerically for v(ζ) at each location on
the arc.  Since we must also calculate the integral along this path, this becomes computationally
expensive.

A simpler method is to just assume that the contour C2 is along a contour of constant v.
This is rigorously true in the limit of high impedances, b a/ → ∞ , because the conductors
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become thin wires at that point.  Since we know the optimal values will occur at relatively high
values of b/a, the approximation is reasonable.  Thus, we search numerically for the value of v
that intersects the circle at (x, y) = (ao, 0), and use that for our contour of constant vo.  From (2.5),
we solve numerically the following for vo,
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j K m E j v m j v E m K mo
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1π
( ) ( | ) ( ( ) ( )) (2.14)

After finding vo, and using the fact that ∆v = 2K(m), we find the aperture height to be
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(2.15)

Note that vo is a negative number, so ha is positive, as it must be.  We estimate the error in this
procedure to be a few percent.  A catalog of contour maps (like those of Figure 2.3) with various
values of b/a is available in [8].  From these contour maps, one can verify our estimate of the
accuracy of the method.

The results for  ha are plotted in Figure 2.8, and the power gain is plotted in Figure 2.9.
The peak gain occurs at Zc = 203.7 Ω,  where the power gain is 1.16 ×  ao.  At this point, b/a =
1.28.

At this point we can check the validity of our numerical approximations.  In particular,
we check the validity of our assumption that the edge of the circular aperture is approximated by
a line of constant v.  A plot of the contour map for the optimal value of b/a = 1.28 is shown in
Figure 2.10.  Also plotted on the map is the circular arc that defines the aperture.  Based on this
plot, the error estimate of a few percent seems reasonable.  Note also that our estimates of ha and
Gp are lower than their actual values, so we are slightly underestimating the true power gain of
this configuration.

It is interesting to compare the results for the blocked aperture to those with the infinite
aperture.  One might expect that an infinitely large aperture would have better performance, but
that is not the case.  The blocked aperture actually has a slightly better power gain, with a value
of 1.16 ×  ao, compared to 1.09 ×  ao for the infinite aperture.  The likely reason for this is that we
have blocked out fields that have a negative contribution to the total radiated field, just above the
top plate and just below the bottom plate.  Therefore, if one wanted to improve the performance
of a simple long TEM horn, one would block out a portion of the field just above and below the
top and bottom plates.
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Figure 2.8.  Normalized aperture height for the blocked aperture with flat plates.
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Figure 2.9.  Normalized power gain for the blocked aperture with flat plates.
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Figure 2.10.  Contour map for the optimal configuration with blocked aperture of b/a = 1.28, and
Zc = 203.7 Ω.  Note that the v contour near the edge of the aperture is approximately the same as
the circle, thus validating the theory used to calculate ha and Gp.
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III.  Optimization of a TEM horn with Curved Plates

We now repeat the calculations of the previous section using curved plates, instead of flat
plates.  The configuration is shown in Figure 3.1.  To solve this problem, we now must determine
the optimal angle α for the plates.  Once again, both the infinite aperture and the blocked aperture
will be considered, as shown in Figure 3.2.

As before, we first establish the characteristic impedance and the aperture field.  The
characteristic impedance of the configuration is Zc =  Zo fg, where [9]

Figure 3.1.  Configuration to be optimized.

Figure 3.2.  Two cases for optimizing the radiated field, infinite aperture (left) and blocked
aperture (right).
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We have plotted Zc as a function of α in Figure 3.3.
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Figure 3.3.  Impedance  of curved plates as a function of α.

The potential function describing this configuration is [9]
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where sn( | )w m  is one of the Jacobian elliptic functions [10], and arcsn is its inverse.  This
complex potential is plotted in Figure 3.4.

With these preliminaries established, we now calculate for our two cases the values of ha
and Gp, as already defined in (2.7) and (2.8).

α (deg)

Zc (Ω)



16

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.4.  Complex potential map for a circular TEM horn.

A.  Curved Plates with Blocked Aperture

Of the two cases we treat in this section, the simplest is when the aperture is blocked, as
shown on the right in Figure 3.2.  In this case, one can use the circular aperture theory of [11] to
find ha.  It was shown there that the step-response radiated field on boresight due to any analytic
field contained within a circular aperture is simply
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where Eo is the field at the center of a circular aperture of radius ao, and δa(t) is an approximation
to the delta function [7].  On the other hand, the radiated field can also be expressed as

E r t V
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a( , ) = −

2π
δ b g (3.5)

Combining the above two equations leads to
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For the current configuration, the electric field at the center of the aperture is [9]
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Combining the above two equations, and using (3.1) for fg, the aperture height is just

h a
K m m

a
o= −
+

π
( ) ( )1 1 ½ (3.8)

Note that as m → 1, the plate width becomes very small.  Furthermore, K m( ) /1 2→ π  and
h aa → o, as we know it must.

One might question the validity of the circular aperture theory used here, because of the
singularity in the fields at the edge of the curved plates. Recall that one of the requirements
imposed on the solution in [11] is that there must be no field singularities in the aperture, since a
singularity cannot be represented by a Fourier expansion of circular harmonics.  But our
singularity occurs at the edge of the aperture, and one can take a boundary around the aperture
that is some ε  inside the previous boundary.  In doing so, one can eliminate the singularity, and
in the limit as ε → 0, the aperture integral is the same as it would have been with no singularity
on the edge.  Thus, the circular aperture theory of [11] is valid for our configuration.

Although it is not really necessary, we note that there are other ways of calculating the
effective aperture height.  In particular, one can calculate ha as a contour integral as before, as
[1,7]

h
v

v dya
Ca

= − z4
∆

ζb g (3.9)

where Ca is the contour shown in Figure 3.5.  To calculate this integral, we note that the integral
over C1 is 0, since there is no change in y.  The integral over C2 also zero, because v = 0 there.
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Finally, the integral over C4 is trivial because it is along a contour of constant v = K(m1)/2.  Thus,
the integral over C4 is just

v dy
a K m

C

oζb g
4

1
2z = −
( )

(3.10)

This leaves us with just the integral over C3 to calculate.

Figure 3.5.  Definition of the contour Ca.

The challenging part of the contour integral is along C3.  It turns out that we can calculate
this numerically, by integrating along a path where ζ = ao e jθ , calculating v(ζ) as the imaginary
part of w(ζ) as expressed in (3.3).  Using the fact that y = ao sin(θ) and dy = ao cos(θ) dθ, we
have
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Combining the above three equations, and noting that ∆v = 2 K(m1), we find
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There is no need to actually use the above formula in the optimization procedure, since we can
use (3.8) much more efficiently.  Nevertheless, we have compared the numerical results obtained
with the two methods, and they are in agreement to machine precision.
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We have calculated ha as a function of impedance in Figure 3.6.  Furthermore, the power
gain Gp , as defined earlier in (2.7), is shown in Figure 3.7.  The peak occurs at Zc = 376.727/2 Ω
(fg = 0.5),  where the power gain is 1.20 ×  ao.  At this point, α = 45o.  Thus, there is a pleasing
symmetry in the result.
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Figure 3.6.  Normalized aperture height for the blocked aperture with curved plates.

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.7.  Normalized power gain for the blocked aperture with curved plates.
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B.  Curved Plates with Infinite Aperture

Finally, we consider curved plates with an infinite aperture, or with the conducting plate
removed, as shown on the left in Figure 3.2.  It turns out that for this particular configuration, the
results with the blocked aperture are exactly the same as those for the infinite aperture, so there
are no additional calculations to perform.  Thus, we find once again that the peak gain of
1.20 ×  ao occurs at fg = 0.5, where  α = 45o

The reasoning for this result has to do with the properties of self-reciprocal apertures, as
developed in [12].  Briefly, it was shown there that when an infinite aperture has the property that
it is self reciprocal, the radiated field on boresight is described by the field at the center of the
aperture (equation 3.4), exactly as for circular apertures [11].  Since we just used [11] to find the
result for a blocked aperture, there is no need to repeat the calculation.  .

As a check on this result, we can calculate ha using the electric dipole moment technique
in (2.11).  The charge on the plates is proportional to the difference in electric fields just above
and below the plates.  Thus, we modify the formula slightly to express this, i.e.,
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E E y d
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+ −

z
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( ) ( )

ζ ζ θ

ζ ζ θ
(3.13)

where the integral is taken over the plates.  Note also that E E( ) ( )ζ ζ+ − and  are the electric
fields just above and below the plates, and that these fields are in the radial direction, because
they must be normal to the conductor.  The electric field is expressed as [9]
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where ζ ε θ
± = ±a eo

j( )1  just above and below the plates, and ε  is a vanishingly small number.
We have carried out this calculation numerically, and we have found the results for ha (and hence
Gp) to be the same as those calculated earlier to within machine precision.

It is interesting to compare this result to an earlier paper [9], which calculated optimal
field uniformity for the same configuration.  It was found in [9] that maximum field uniformity at
the center of the aperture also occurs at fg = 0.5 and α = 45o.  Since it is believed that maximum
field uniformity leads to maximum radiated field, our result appears to be quite reasonable.
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IV.  Conclusions

We have found the optimal impedances for long TEM horns and lens IRAs, for the cases
of blocked apertures and infinite apertures, when the antennas are confined to remain within a
circle of a given radius.  The optimal results are summarized in Table 4.1.  As perhaps we might
have expected, either of the two configurations with curved plates has the highest gain, since they
more completely fill the available aperture.  However, the flat-plate configuration with blocked
aperture is not far behind.

Table 4.1  Summary of Optimal Configurations

Configuration
Figure of Merit

Gp /ao

Zc
(Ω)

Relevant
Parameter

  Circular Plates, Blocked or
      Infinite Aperture

1.20 188.4 α = 45o

  Flat Plates, Blocked Aperture 1.16 203.7 b/a = 1.28

  Flat Plates, Infinite Aperture 1.09 242.3 b/a = 1.82
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